Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1091 - 1100 of 2,024 for = (0.95 sec)

  1. incr_mean_variance_axis — scikit-learn 1.7.1 do...

    axis = 0 , last_mean = np . zeros ( 3 ), last_var = np . zeros...(n_features,) if axis=0 or (n_samples,) if axis=1. last_var ndarray...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis.html
    Mon Aug 25 13:49:18 UTC 2025
      111.7K bytes
      Cache
     
  2. Examples of Using FrozenEstimator — scikit-lear...

    y = make_classification ( n_samples = 1000 , random_state...random_state = 0 ) X_train , X_test , y_train , y_test = train_test_split...
    scikit-learn.org/stable/auto_examples/frozen/plot_frozen_examples.html
    Mon Aug 25 13:49:19 UTC 2025
      100.9K bytes
      Cache
     
  3. learning_curve — scikit-learn 1.7.1 documentation

    exploit_incremental_learning = False , n_jobs = None , pre_dispatch = 'all' , verbose...verbose = 0 , shuffle = False , random_state = None , error_score...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html
    Mon Aug 25 13:49:19 UTC 2025
      125.7K bytes
      Cache
     
  4. classificationDefinitionMap | DBFlute

    code=FOO; name=Foo; alias=Who; comment=Fooさん ; subItemMap=map:{...codeType=String} ; map: {code=PRV;name=Provisional;alias=仮会員 ;c...
    dbflute.seasar.org/ja/manual/reference/dfprop/classificationdefinition/index.html
    Tue Aug 12 02:41:09 UTC 2025
      40.4K bytes
      Cache
     
  5. FastICA — scikit-learn 1.7.1 documentation

    fun = 'logcosh' , fun_args = None , max_iter = 200 , tol = 0.0001...n_components = None , * , algorithm = 'parallel' , whiten = 'unit-variance'...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
    Mon Aug 25 13:49:18 UTC 2025
      148.6K bytes
      Cache
     
  6. Inductive Clustering — scikit-learn 1.7.1 docum...

    c = color , alpha = alpha , edgecolor = "k" ) # Generate..., y = make_blobs ( n_samples = N_SAMPLES , cluster_std = [ 1.0...
    scikit-learn.org/stable/auto_examples/cluster/plot_inductive_clustering.html
    Mon Aug 25 13:49:23 UTC 2025
      101.9K bytes
      Cache
     
  7. f_regression — scikit-learn 1.7.1 documentation

    y = make_regression ( ... n_samples = 50 , n_features = 3 ,...n_informative = 1 , noise = 1e-4 , random_state = 42 ... ) >>>...
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
    Mon Aug 25 13:49:18 UTC 2025
      118.1K bytes
      Cache
     
  8. GradientBoostingRegressor — scikit-learn 1.7.1 ...

    n_estimators = 100 , subsample = 1.0 , criterion = 'friedman_mse' ,...min_weight_fraction_leaf = 0.0 , max_depth = 3 , min_impurity_decrease = 0.0 , init...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
    Mon Aug 25 13:49:19 UTC 2025
      171.9K bytes
      Cache
     
  9. Pipelining: chaining a PCA and a logistic regre...

    logistic = LogisticRegression ( max_iter = 10000 , tol = 0.1 ) pipe...ax0 , ax1 ) = plt . subplots ( nrows = 2 , sharex = True , figsize...
    scikit-learn.org/stable/auto_examples/compose/plot_digits_pipe.html
    Mon Aug 25 13:49:18 UTC 2025
      97.2K bytes
      Cache
     
  10. contingency_matrix — scikit-learn 1.7.1 documen...

    eps=None , sparse=False , dtype=<class 'numpy.int64'>...labels_true = [ 0 , 0 , 1 , 1 , 2 , 2 ] >>> labels_pred = [ 1 , 0...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.contingency_matrix.html
    Mon Aug 25 13:49:24 UTC 2025
      109.4K bytes
      Cache
     
Back to top