Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1051 - 1060 of 2,651 for 2 (0.08 sec)

  1. 12.1. Array API support (experimental) — scikit...

    2.2. Meta-estimators # Meta-estimators...X_trans . device . type 'cuda' 12.1.2. Support for Array API -compatible...
    scikit-learn.org/stable/modules/array_api.html
    Mon Oct 20 15:12:26 UTC 2025
      77.1K bytes
      Cache
     
  2. Examples based on real world datasets — scikit-...

    Applications to real world problems with some medium sized datasets or interactive user interface. Compressive sensing: tomography reconstruction with L1 prior (Lasso) Faces recognition example usi...
    scikit-learn.org/stable/auto_examples/applications/index.html
    Mon Oct 20 15:12:26 UTC 2025
      81.8K bytes
      Cache
     
  3. sklearn.kernel_approximation — scikit-learn 1.7...

    Approximate kernel feature maps based on Fourier transforms and count sketches. User guide. See the Kernel Approximation section for further details.
    scikit-learn.org/stable/api/sklearn.kernel_approximation.html
    Mon Oct 20 15:12:27 UTC 2025
      116.1K bytes
      Cache
     
  4. sklearn.random_projection — scikit-learn 1.7.2 ...

    Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...
    scikit-learn.org/stable/api/sklearn.random_projection.html
    Mon Oct 20 15:12:27 UTC 2025
      116.4K bytes
      Cache
     
  5. fetch_species_distributions — scikit-learn 1.7....

    Gallery examples: Species distribution modeling Kernel Density Estimate of Species Distributions
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_species_distributions.html
    Mon Oct 20 15:12:26 UTC 2025
      112.7K bytes
      Cache
     
  6. load_sample_image — scikit-learn 1.7.2 document...

    Skip to main content Back to top Ctrl + K GitHub Choose version load_sample_image # sklearn.datasets. load_sample_ima...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_sample_image.html
    Mon Oct 20 15:12:26 UTC 2025
      106.4K bytes
      Cache
     
  7. sklearn.naive_bayes — scikit-learn 1.7.2 docume...

    Naive Bayes algorithms. These are supervised learning methods based on applying Bayes’ theorem with strong (naive) feature independence assumptions. User guide. See the Naive Bayes section for furt...
    scikit-learn.org/stable/api/sklearn.naive_bayes.html
    Mon Oct 20 15:12:27 UTC 2025
      115.8K bytes
      Cache
     
  8. estimator_checks_generator — scikit-learn 1.7.2...

    Skip to main content Back to top Ctrl + K GitHub Choose version estimator_checks_generator # sklearn.utils.estimator_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.estimator_checks_generat...
    Mon Oct 20 15:12:26 UTC 2025
      109.7K bytes
      Cache
     
  9. fetch_20newsgroups_vectorized — scikit-learn 1....

    Gallery examples: Model Complexity Influence Multiclass sparse logistic regression on 20newgroups The Johnson-Lindenstrauss bound for embedding with random projections
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups_vectorized.html
    Mon Oct 20 15:12:26 UTC 2025
      118.2K bytes
      Cache
     
  10. fetch_california_housing — scikit-learn 1.7.2 d...

    Gallery examples: Comparing Random Forests and Histogram Gradient Boosting models Early stopping in Gradient Boosting Imputing missing values with variants of IterativeImputer Imputing missing valu...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html
    Mon Oct 20 15:12:26 UTC 2025
      116.9K bytes
      Cache
     
Back to top