- Sort Score
- Num 10 results
- Language All
- Labels All
Results 981 - 990 of 9,632 for 1 (1.03 seconds)
-
About us — scikit-learn 1.7.2 documentation
History: This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu Brucher started working on this project as part of his thesis. In 2010 Fa...scikit-learn.org/stable/about.html -
sklearn.dummy — scikit-learn 1.7.2 docume...
Dummy estimators that implement simple rules of thumb. User guide. See the Metrics and scoring: quantifying the quality of predictions section for further details.scikit-learn.org/stable/api/sklearn.dummy.html -
sklearn.naive_bayes — scikit-learn 1.7.2 ...
Naive Bayes algorithms. These are supervised learning methods based on applying Bayes’ theorem with strong (naive) feature independence assumptions. User guide. See the Naive Bayes section for furt...scikit-learn.org/stable/api/sklearn.naive_bayes.html -
sklearn.utils — scikit-learn 1.7.2 docume...
Various utilities to help with development. Developer guide. See the Utilities for Developers section for further details. Input and parameter validation: Functions to validate input and parameters...scikit-learn.org/stable/api/sklearn.utils.html -
sklearn.random_projection — scikit-learn ...
Random projection transformers. Random projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional ...scikit-learn.org/stable/api/sklearn.random_projection.html -
7. Dataset transformations — scikit-learn...
1. Pipelines and composite estimators 7.1.1. Pipeline:...estimators 7.1.2. Transforming target in regression 7.1.3. FeatureUnion:...scikit-learn.org/stable/data_transforms.html -
Wikipedia principal eigenvector — scikit-...
1 )[ 1 ] page_links_url = "h.... rsplit ( "/" , 1 )[ 1 ] resources = [ ( redirects_url...scikit-learn.org/stable/auto_examples/applications/wikipedia_principal_eigenvector.html -
Gradient Boosting regularization — scikit...
random_state = 1 ) # map labels from {-1, 1} to {0, 1} labels , y..."learning_rate" : 1.0 , "subsample" : 1.0 }), ( "...scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html -
Probability Calibration curves — scikit-l...
1 ), ( 3 , 0 ), ( 3 , 1 )] for i , ( _ , name...calibrated_df , 0 , 1 ) proba_neg_class = 1 - proba_pos_class proba...scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html -
Compare BIRCH and MiniBatchKMeans — sciki...
threshold = 1.7 , n_clusters = None ), Birch ( threshold = 1.7 , n_clusters...= fig . add_subplot ( 1 , 3 , ind + 1 ) for this_centroid , k...scikit-learn.org/stable/auto_examples/cluster/plot_birch_vs_minibatchkmeans.html