Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 941 - 950 of 3,200 for 2 (1.03 sec)

  1. Label Propagation digits: Demonstrating perform...

    RandomState ( 2 ) indices = np . arange ( len...1.00 1.00 27 1 0.82 1.00 0.90 37 2 1.00 0.86 0.92 28 3 1.00 0.80...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits.html
    Thu Sep 18 09:36:18 UTC 2025
      99.4K bytes
      Cache
     
  2. Non-negative least squares — scikit-learn 1.7.2...

    In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...
    scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html
    Thu Sep 18 09:36:18 UTC 2025
      93.4K bytes
      Cache
     
  3. clear_data_home — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version clear_data_home # sklearn.datasets. clear_data_home (...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.clear_data_home.html
    Thu Sep 18 09:36:17 UTC 2025
      105.1K bytes
      Cache
     
  4. sklearn.discriminant_analysis — scikit-learn 1....

    Linear and quadratic discriminant analysis. User guide. See the Linear and Quadratic Discriminant Analysis section for further details.
    scikit-learn.org/stable/api/sklearn.discriminant_analysis.html
    Thu Sep 18 09:36:18 UTC 2025
      114.8K bytes
      Cache
     
  5. calinski_harabasz_score — scikit-learn 1.7.2 do...

    Skip to main content Back to top Ctrl + K GitHub Choose version calinski_harabasz_score # sklearn.metrics. calinski_h...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
    Thu Sep 18 09:36:17 UTC 2025
      107.6K bytes
      Cache
     
  6. compute_class_weight — scikit-learn 1.7.2 docum...

    Skip to main content Back to top Ctrl + K GitHub Choose version compute_class_weight # sklearn.utils.class_weight. co...
    scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
    Thu Sep 18 09:36:18 UTC 2025
      108.3K bytes
      Cache
     
  7. make_column_selector — scikit-learn 1.7.2 docum...

    Gallery examples: Column Transformer with Mixed Types Categorical Feature Support in Gradient Boosting Combine predictors using stacking Evaluation of outlier detection estimators
    scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_selector.html
    Thu Sep 18 09:36:17 UTC 2025
      117.6K bytes
      Cache
     
  8. sklearn.linear_model — scikit-learn 1.7.2 docum...

    A variety of linear models. User guide. See the Linear Models section for further details. The following subsections are only rough guidelines: the same estimator can fall into multiple categories,...
    scikit-learn.org/stable/api/sklearn.linear_model.html
    Thu Sep 18 09:36:18 UTC 2025
      135.4K bytes
      Cache
     
  9. sklearn.semi_supervised — scikit-learn 1.7.2 do...

    Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. User guide. See the Semi-supervised learnin...
    scikit-learn.org/stable/api/sklearn.semi_supervised.html
    Thu Sep 18 09:36:17 UTC 2025
      115.3K bytes
      Cache
     
  10. sklearn.cross_decomposition — scikit-learn 1.7....

    Algorithms for cross decomposition. User guide. See the Cross decomposition section for further details.
    scikit-learn.org/stable/api/sklearn.cross_decomposition.html
    Thu Sep 18 09:36:18 UTC 2025
      115.3K bytes
      Cache
     
Back to top