- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 931 - 940 of 2,960 for 1 (0.34 sec)
-
MetaEstimatorMixin — scikit-learn 1.6.1 documen...
scikit-learn.org/stable/modules/generated/sklearn.base.MetaEstimatorMixin.html -
Manifold learning on handwritten digits: Locall...
array ([[ 1.0 , 1.0 ]]) # just something big...data . flat [:: X . shape [ 1 ] + 1 ] += 0.01 # Make X invertible...scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html -
Release Highlights — scikit-learn 1.6.1 documen...
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Release Highlights...scikit-learn 1.6 Release Highlights for scikit-learn 1.6 Release...scikit-learn.org/stable/auto_examples/release_highlights/index.html -
Marvel Reference for 2.x and 1.x | Elastic
x and 1.x: 2.1 Marvel Reference for 2.x and 1.x: 2.0 Marvel...Reference for 2.x and 1.x Marvel Reference for 2.x and 1.x: 2.4 (current)...www.elastic.co/guide/en/marvel/index.html -
Multilabel classification — scikit-learn 1.6.1 ...
1 ]) max_y = np . max ( X [:, 1 ]) classif = OneVsRestClassifier...where ( Y [:, 1 ]) plt . scatter ( X [:, 0 ], X [:, 1 ], s = 40 ,...scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html -
Demonstration of multi-metric evaluation on cro...
1 ) # Get the regular numpy array...sample_score_std , alpha = 0.1 if sample == "test" else 0 , color...scikit-learn.org/stable/auto_examples/model_selection/plot_multi_metric_evaluation.html -
Quantile regression — scikit-learn 1.6.1 docume...
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Lagged features...axs [ 1 , 0 ] . set_xlabel ( "Residuals" ) _ = axs [ 1 , 1 ] ....scikit-learn.org/stable/auto_examples/linear_model/plot_quantile_regression.html -
is_multilabel — scikit-learn 1.6.1 documentation
1 , 0 , 1 ]) False >>> is_multilabel ([[ 1 ], [ 0 ,...is_multilabel ( np . array ([[ 1 , 0 ], [ 0 , 0 ]])) True >>> is_multilabel...scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.is_multilabel.html -
Getting Started — scikit-learn 1.6.1 documentation
dataset is easy array([1., 1., 1., 1., 1.]) Automatic parameter...transform ( X ) array([[-1., 1.], [ 1., -1.]]) Sometimes, you want...scikit-learn.org/stable/getting_started.html -
CompoundKernel — scikit-learn 1.6.1 documentation
theta ) [1.09861229 0.69314718] __call__...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.CompoundKernel.html