Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 931 - 940 of 4,347 for * (0.27 sec)

  1. Elasticsearch AI Playground: Experiment, ingest...

    like OpenAI, Amazon Bedrock, Anthropic and more. Explore Datasets...with AI Playground, now in Elasticsearch. Ingest your own data...
    www.elastic.co/demo-gallery/ai-playground
    Mon Jul 28 00:35:03 UTC 2025
      695K bytes
      Cache
     
  2. Elastic Serverless | Elastic

    from logs Observability 101: Lesson 1 of 4 Learn the basics of...end of this 15 minute Elastic Observability lab, youll be able...
    www.elastic.co/demo-gallery/serverless
    Mon Jul 28 00:34:52 UTC 2025
      653.6K bytes
      Cache
     
  3. Beyond RAG Basics: Advanced strategies for AI a...

    the proof-of-concept stage. Our speakers, Lily Adler, principal...frameworks, such as LangChain, LlamaIndex, Autogen, and Cohere's API,...
    www.elastic.co/blog/beyond-rag-basics
    Mon Jul 28 00:45:33 UTC 2025
      547.6K bytes
      Cache
     
  4. Kibana Dashboards: Level Up | Elastic Videos

    hosted Kibana (and Elasticsearch) with a no-cost 14-day trial of...Saved search in dashboard Tips, hacks, and advanced filters across...
    www.elastic.co/webinars/kibana-dashboards-level-up
    Mon Jul 28 00:46:19 UTC 2025
      440.5K bytes
      Cache
     
  5. 2.7. Novelty and Outlier Detection scikit-lea...

    computation 13.7 (2001): 1443-1471. Examples See One-class SVM with...data set. References Rousseeuw, P.J., Van Driessen, K. A fast...
    scikit-learn.org/stable/modules/outlier_detection.html
    Sun Jul 27 08:01:31 UTC 2025
      72.6K bytes
      Cache
     
  6. 9.1. Strategies to scale computationally: bigge...

    algorithm 9.1.1.1. Streaming instances # Basically, 1. may be a...documents. 9.1.1.3. Incremental learning # Finally, for 3. we have...
    scikit-learn.org/stable/computing/scaling_strategies.html
    Sun Jul 27 08:01:32 UTC 2025
      46.2K bytes
      Cache
     
  7. LatentDirichletAllocation scikit-learn 1.7.1 ...

    evaluate_every = -1 , total_samples = 1000000.0 , perp_tol = 0.1 , mean_change_tol...model.components_ / model.components_.sum(axis=1)[:, np.newaxis]...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
    Sun Jul 27 08:01:31 UTC 2025
      152.5K bytes
      Cache
     
  8. GaussianNB scikit-learn 1.7.1 documentation

    - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2 , 1...1 ], [ 3 , 2 ]]) >>> Y = np . array ([ 1 , 1 , 1 , 2 , 2 , 2...
    scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
    Sun Jul 27 08:01:34 UTC 2025
      155.2K bytes
      Cache
     
  9. 7.6. Random Projection scikit-learn 1.7.1 doc...

    mining (KDD 01). ACM, New York, NY, USA, 245-250. 7.6.1. The ...im ( n_samples = 1e6 , eps = [ 0.5 , 0.1 , 0.01 ]) array([ 663,...
    scikit-learn.org/stable/modules/random_projection.html
    Sun Jul 27 08:01:33 UTC 2025
      48.4K bytes
      Cache
     
  10. plot_classifier_comparison.ipynb

    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5\n y_min,...GaussianProcessClass(1.0 * RBF(1.0), random_state=42),\n DecisionTreeClassifi(max_depth=5,...
    scikit-learn.org/stable/_downloads/3438aba177365cb595921cf18806dfa7/plot_classifier_comparison.ipynb
    Sun Jul 27 08:01:33 UTC 2025
      5.7K bytes
     
Back to top