- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 891 - 900 of 2,009 for = (0.05 sec)
-
CCA — scikit-learn 1.7.0 documentation
n_components = 2 , * , scale = True , max_iter = 500 , tol = 1e-06 ,...11.9 , 12.3 ]] >>> cca = CCA ( n_components = 1 ) >>> cca . fit (...scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.CCA.html -
dbscan — scikit-learn 1.7.0 documentation
metric_params = None , algorithm = 'auto' , leaf_size = 30 , p = 2 , sample_weight...dbscan ( X , eps = 0.5 , * , min_samples = 5 , metric = 'minkowski'...scikit-learn.org/stable/modules/generated/dbscan-function.html -
affinity_propagation — scikit-learn 1.7.0 docum...
preference = None , convergence_iter = 15 , max_iter = 200 , damping...damping = 0.5 , copy = True , verbose = False , return_n_iter =...scikit-learn.org/stable/modules/generated/sklearn.cluster.affinity_propagation.html -
fetch_rcv1 — scikit-learn 1.7.0 documentation
data_home = None , subset = 'all' , download_if_missing = True ,...random_state = None , shuffle = False , return_X_y = False , n_retries...scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_rcv1.html -
FeatureAgglomeration — scikit-learn 1.7.0 docum...
( n_clusters=2 , * , metric='euclidean' , memory=None , connectivity=None...connectivity=None , compute_full_tree='auto' , linkage='ward' , p...scikit-learn.org/stable/modules/generated/sklearn.cluster.FeatureAgglomeration.html -
make_gaussian_quantiles — scikit-learn 1.7.0 do...
mean = None , cov = 1.0 , n_samples = 100 , n_features = 2 , n_classes...n_classes = 3 , shuffle = True , random_state = None ) [source]...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html -
Instrumenting your OpenAI-powered Python, Node....
r=snapshots&g=co.elastic.otel&a=elastic-otel-javaagent&v=LATEST'...OPENAI_API_KEY=sk-YOUR_API_KEY OTEL_EXPORTER_OTLP_ENDPOINT=http://localhost:8200...www.elastic.co/observability-labs/blog/elastic-opentelemetry-openai -
Displaying estimators and complex pipelines — s...
lr = LogisticRegression ( penalty = "l1" ) print (...num_proc = make_pipeline ( SimpleImputer ( strategy = "median"...scikit-learn.org/stable/auto_examples/miscellaneous/plot_estimator_representation.html -
classification_report — scikit-learn 1.7.0 docu...
labels = None , target_names = None , sample_weight = None ,..., digits = 2 , output_dict = False , zero_division = 'warn' )...scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html -
QuadraticDiscriminantAnalysis — scikit-learn 1....
priors = None , reg_param = 0.0 , store_covariance = False ,...>>> y = np . array ([ 1 , 1 , 1 , 2 , 2 , 2 ]) >>> clf = QuadraticDiscriminan...scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnal...