Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 841 - 850 of 2,002 for = (0.06 sec)

  1. Probability calibration of classifiers — scikit...

    ): this_X = X_train [ y_train == this_y ] this_sw = sw_train [...n_samples = n_samples , centers = centers , shuffle = False , random_state...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration.html
    Thu Jul 03 11:42:05 UTC 2025
      109.3K bytes
      Cache
     
  2. Developing scikit-learn estimators — scikit-lea...

    method: clf2 = SGDClassifier ( alpha = 2.3 ) clf3 = SGDClassifier...self , param1 = 1 , param2 = 2 ): self . param1 = param1 self ....
    scikit-learn.org/stable/developers/develop.html
    Thu Jul 03 11:42:04 UTC 2025
      108.6K bytes
      Cache
     
  3. RationalQuadratic — scikit-learn 1.7.0 document...

    length_scale = 1.0 , alpha = 1.0 , length_scale_bounds = (1e-05, 100000.0)...>>> X , y = load_iris ( return_X_y = True ) >>> kernel = RationalQuadratic...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RationalQuadratic.html
    Thu Jul 03 11:42:04 UTC 2025
      127.1K bytes
      Cache
     
  4. favicon_64x64_16bit.png

    35273367 width=64, height=64, bitDepth=8, colorType=RGBAlpha, c...whitePointX=31270, whitePointY=32900, redX=64000, redY=33000, greenX=30000,...
    www.elastic.co/favicon_64x64_16bit.png
    Mon Mar 24 20:10:51 UTC 2025
      6.1K bytes
     
  5. Ridge coefficients as a function of the L2 Regu...

    w = make_regression ( n_samples = 100 , n_features = 10 ,...n_informative = 8 , coef = True , random_state = 1 ) # Obtain...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    Thu Jul 03 11:42:06 UTC 2025
      103.3K bytes
      Cache
     
  6. Bisecting K-Means and Regular K-Means Performan...

    data n_samples = 10000 random_state = 0 X , _ = make_blobs ( n_samples...n_samples = n_samples , centers = 2 , random_state = random_state...
    scikit-learn.org/stable/auto_examples/cluster/plot_bisect_kmeans.html
    Thu Jul 03 11:42:06 UTC 2025
      90.2K bytes
      Cache
     
  7. ElasticNetCV — scikit-learn 1.7.0 documentation

    max_iter = 1000 , tol = 0.0001 , cv = None , copy_X = True , verbose...l1_ratio = 0.5 , eps = 0.001 , n_alphas = 100 , alphas = None ,...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNetCV.html
    Thu Jul 03 11:42:04 UTC 2025
      166.7K bytes
      Cache
     
  8. Demonstration of k-means assumptions — scikit-l...

    ( X [ y == 0 ][: 500 ], X [ y == 1 ][: 100 ], X [ y == 2 ][: 10...axs = plt . subplots ( nrows = 2 , ncols = 2 , figsize = ( 12...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
    Thu Jul 03 11:42:04 UTC 2025
      115.6K bytes
      Cache
     
  9. IsotonicRegression — scikit-learn 1.7.0 documen...

    y_min = None , y_max = None , increasing = True , out_of_bounds...X , y = make_regression ( n_samples = 10 , n_features = 1 , random_state...
    scikit-learn.org/stable/modules/generated/sklearn.isotonic.IsotonicRegression.html
    Thu Jul 03 11:42:06 UTC 2025
      146K bytes
      Cache
     
  10. Plotting Cross-Validated Predictions — scikit-l...

    y = load_diabetes ( return_X_y = True ) lr = LinearRegression...y_pred = cross_val_predict ( lr , X , y , cv = 10 ) Since cv=10 ,...
    scikit-learn.org/stable/auto_examples/model_selection/plot_cv_predict.html
    Thu Jul 03 11:42:04 UTC 2025
      92.5K bytes
      Cache
     
Back to top