- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 781 - 790 of 3,455 for 1 (0.11 sec)
-
Nearest Centroid Classification — scikit-learn ...
1 ], c = y , cmap = cmap_bold ,...scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html -
EfficiencyWarning — scikit-learn 1.6.0 document...
Skip to main content Back to top Ctrl + K GitHub Choose version EfficiencyWarning # exception sklearn.exceptions. Eff...scikit-learn.org/stable/modules/generated/sklearn.exceptions.EfficiencyWarning.html -
ClassifierTags — scikit-learn 1.6.0 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version ClassifierTags # class sklearn.utils. ClassifierTags ...scikit-learn.org/stable/modules/generated/sklearn.utils.ClassifierTags.html -
Release Highlights — scikit-learn 1.6.0 documen...
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Release Highlights...scikit-learn 1.6 Release Highlights for scikit-learn 1.6 Release...scikit-learn.org/stable/auto_examples/release_highlights/index.html -
CompoundKernel — scikit-learn 1.6.0 documentation
theta ) [1.09861229 0.69314718] __call__...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.CompoundKernel.html -
Maintainer Information — scikit-learn 1.7.dev0 ...
git tag -a 1 .6.1 # in the 1.6.X branch git push g...checkout -b 1 .7.X git push --set-upstream upstream 1 .7.X Create...scikit-learn.org/dev/developers/maintainer.html -
Multilabel classification — scikit-learn 1.6.0 ...
1 ]) max_y = np . max ( X [:, 1 ]) classif = OneVsRestClassifier...where ( Y [:, 1 ]) plt . scatter ( X [:, 0 ], X [:, 1 ], s = 40 ,...scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html -
Demo of OPTICS clustering algorithm — scikit-le...
subplot ( G [ 1 , 0 ]) ax3 = plt . subplot ( G [ 1 , 1 ]) ax4 = plt...labels_ == - 1 , 0 ], X [ clust . labels_ == - 1 , 1 ], "k+" , alpha...scikit-learn.org/stable/auto_examples/cluster/plot_optics.html -
Tweedie regression on insurance claims — scikit...
tweedie_powers = [ 1.5 , 1.7 , 1.8 , 1.9 , 1.99 , 1.999 , 1.9999 ] scores_product_model...dev p=1.9990 1.914573e+03 1.914370e+03 1.914538e+03 1.914387e+03...scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html -
resample — scikit-learn 1.6.0 documentation
1 , 1 , 1 , 1 , 1 ] >>> resample ( y , n_samples = 5 , replace...array([[1., 0.], [2., 1.], [1., 0.]]) >>> y array([0, 1, 0]) >>>...scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html