Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 711 - 720 of 3,416 for 1 (0.28 sec)

  1. An example of K-Means++ initialization — scikit...

    :: - 1 ] # Calculate seeds from k-means++...side sample data plt . figure ( 1 ) colors = [ "#4EACC5" , "#FF9C34"...
    scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html
    Thu Oct 31 11:00:34 UTC 2024
      84.2K bytes
      Cache
     
  2. Vector Quantization Example — scikit-learn 1.5....

    bin_edges [: - 1 ] + ( bin_edges [ 1 :] - bin_edges [: - 1 ]) / 2 bin_center...bin_edges [: - 1 ] + ( bin_edges [ 1 :] - bin_edges [: - 1 ]) / 2 bin_center...
    scikit-learn.org/stable/auto_examples/cluster/plot_face_compress.html
    Thu Oct 31 11:00:34 UTC 2024
      107.5K bytes
      Cache
     
  3. How to optimize for speed — scikit-learn 1.6.de...

    py : 18 ( _pos ) 1 0.053 0.053 1.681 1.681 nmf . py : 352 (...: 337 ( __init__ ) 1 0.000 0.000 1.681 1.681 nmf . py : 461 (...
    scikit-learn.org/dev/developers/performance.html
    Thu Oct 31 11:00:35 UTC 2024
      69.9K bytes
      Cache
     
  4. top_k_accuracy_score — scikit-learn 1.5.2 docum...

    The best performance is 1 with normalize == True and the...>>> y_true = np . array ([ 0 , 1 , 2 , 2 ]) >>> y_score = np ....
    scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html
    Thu Oct 31 11:00:34 UTC 2024
      111.5K bytes
      Cache
     
  5. GenericUnivariateSelect — scikit-learn 1.5.2 do...

    Added in version 1.0. See also f_classif ANOVA F-value..."x1", ..., "x(n_features_in_ - 1)"] . If input_features is an array-like,...
    scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html
    Thu Oct 31 11:00:34 UTC 2024
      133.1K bytes
      Cache
     
  6. Effect of varying threshold for self-training —...

    mean ( axis = 1 ), yerr = scores . std ( axis = 1 ), capsize =...( axis = 1 ), yerr = amount_labeled . std ( axis = 1 ), capsize...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_self_training_varying_threshold.html
    Thu Oct 31 11:00:34 UTC 2024
      98.2K bytes
      Cache
     
  7. make_friedman2 — scikit-learn 1.5.2 documentation

    1 ] <= 560 * pi , 0 <= X [:, 2 ] <= 1 , 1 <= X [:, 3...** 2 + ( X [:, 1 ] * X [:, 2 ] - 1 / ( X [:, 1 ] * X [:, 3 ]))...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman2.html
    Thu Oct 31 11:00:34 UTC 2024
      109.6K bytes
      Cache
     
  8. A demo of the mean-shift clustering algorithm —...

    centers = [[ 1 , 1 ], [ - 1 , - 1 ], [ 1 , - 1 ]] X , _ = make_blobs...matplotlib.pyplot as plt plt . figure ( 1 ) plt . clf () colors = [ "#dede00"...
    scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
    Thu Oct 31 11:00:32 UTC 2024
      88.2K bytes
      Cache
     
  9. PCA example with Iris Data-set — scikit-learn 1...

    1 ] . mean () + 1.5 , X [ y == label , 2...features 1 and 2 Sparsity Example: Fitting only features 1 and 2...
    scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html
    Thu Oct 31 11:00:32 UTC 2024
      86.3K bytes
      Cache
     
  10. contingency_matrix — scikit-learn 1.5.2 documen...

    labels_pred ) array([[1, 1, 0], [0, 1, 1], [1, 0, 1]]) On this page..., 0 , 1 , 1 , 2 , 2 ] >>> labels_pred = [ 1 , 0 , 2 , 1 , 0 ,...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.contingency_matrix.html
    Thu Oct 31 11:00:34 UTC 2024
      108.3K bytes
      Cache
     
Back to top