- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 711 - 720 of 2,897 for 1 (0.09 sec)
-
EllipticEnvelope — scikit-learn 1.7.0 documenta...
n_features + 1) / 2 * n_samples . Range is (0, 1). contamination...>>> # predict returns 1 for an inlier and -1 for an outlier >>>...scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html -
Gaussian process classification (GPC) on iris d...
y ) kernel = 1.0 * RBF ([ 1.0 , 1.0 ]) gpc_rbf_anisotropic...() - 1 , X [:, 0 ] . max () + 1 y_min , y_max = X [:, 1 ] . min...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html -
CalibrationDisplay — scikit-learn 1.7.0 documen...
pos_label is set to 1. Added in version 1.1. name str, default=None...estimators.classes_[1] when using from_estimator and set to 1 when using...scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibrationDisplay.html -
LassoLars — scikit-learn 1.7.0 documentation
([[ - 1 , 1 ], [ 0 , 0 ], [ 1 , 1 ]], [ - 1 , 0 , - 1 ]) LassoLars(alpha=0.01)...sklearn.linear_model. LassoLars ( alpha = 1.0 , * , fit_intercept = True ,...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html -
DictionaryLearning — scikit-learn 1.7.0 documen...
* || U || _1 , 1 ( U , V ) with || V_k || _2 <= 1 for all 0 <=...the Frobenius norm and ||.||_1,1 stands for the entry-wise matrix...scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html -
BayesianGaussianMixture — scikit-learn 1.7.0 do...
array ([[ 1 , 2 ], [ 1 , 4 ], [ 1 , 0 ], [ 4 , 2 ], [...mixtures”. Bayesian analysis 1.1 Examples >>> import numpy as...scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html -
KMeans — scikit-learn 1.7.0 documentation
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Clustering...X = np . array ([[ 1 , 2 ], [ 1 , 4 ], [ 1 , 0 ], ... [ 10 , 2...scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html -
Lars — scikit-learn 1.7.0 documentation
n_nonzero_coefs = 1 ) >>> reg . fit ([[ - 1 , 1 ], [ 0 , 0 ], [ 1 , 1 ]], [...[ - 1.1111 , 0 , - 1.1111 ]) Lars(n_nonzero_coefs=1) >>> print...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html -
MultiLabelBinarizer — scikit-learn 1.7.0 docume...
fit_transform ([( 1 , 2 ), ( 3 ,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb...{ 'comedy' }]) array([[0, 1, 1], [1, 0, 0]]) >>> list ( mlb ....scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html -
Fitting an Elastic Net with a precomputed Gram ...
-1.67451144e+02], [-4.48938813e+02, 1.00768662e+05, 1.19112072e+02,......, -1.07963978e+03, 7.47987268e+01, -5.76195467e+02], [-1.03237920e+03,...scikit-learn.org/stable/auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_...