- Sort Score
- Num 10 results
- Language All
- Labels All
Results 671 - 680 of 5,592 for c (0.12 seconds)
-
SVM: Separating hyperplane for unbalanced class...
C = 1.0 ) clf . fit ( X , y ) #...scatter ( X [:, 0 ], X [:, 1 ], c = y , cmap = plt . cm . Paired...scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html -
plot_release_highlights_1_7_0.zip
or with conda:: conda install -c conda-forge scikit-learn """ #...d=False), LogisticRegression(C=2.0)) model # %% # Custom validation...scikit-learn.org/stable/_downloads/0f052545c78541815099d62501f25a9e/plot_release_highlights_1_7_0... -
Mobile development - IBM Developer
2024 Tutorial Reuse existing C code with the Android NDK Learn...application in Java that uses C code to perform basic image processing...developer.ibm.com/technologies/mobile -
GitHub - codelibs/fess-testdata: Test Data Repo...
github.com/codelibs/fess-testdata -
LinearSVR — scikit-learn 1.8.0 documentation
C = 1.0 , loss = 'epsilon_insensitive'...Tolerance for stopping criteria. C float, default=1.0 Regularization...scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html -
plot_pca_iris.zip
c=iris.target, s=40, ) ax.set( title="First...X_reduced[:, 1],\n X_reduced[:, 2],\n c=iris.target,\n s=40,\n)\n\nax.set(\n...scikit-learn.org/stable/_downloads/99402c7ce7a6ab7fafcb48caa3c9447b/plot_pca_iris.zip -
oas — scikit-learn 1.8.0 documentation
scikit-learn.org/stable/modules/generated/oas-function.html -
auto_examples_jupyter.zip
c in enumerate(centers):\n ax2.scatter(c[0], c[1], marker=\"$%d$\"...RANDOM_SEED)\nprint(\"Class\", \"P(C)\", \"P(w0|C)\", \"P(w1|C)\", sep=\"\\t\")\nfor...scikit-learn.org/stable/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip -
Post-tuning the decision threshold for cost-sen...
'deprecated' C C: float, default=1.0 Inverse of...t'`. 'deprecated' C C: float, default=1.0 Inverse of...scikit-learn.org/stable/auto_examples/model_selection/plot_cost_sensitive_learning.html -
plot_release_highlights_1_7_0.py
or with conda:: conda install -c conda-forge scikit-learn """ #...d=False), LogisticRegression(C=2.0)) model # %% # Custom validation...scikit-learn.org/stable/_downloads/27dd4dbb41dee53fc86e0d5b6d3254d3/plot_release_highlights_1_7_0.py