Search Options

Display Count
Sort
Preferred Language
Label
Advanced Search

Results 661 - 670 of over 10,000 for 1 (0.33 seconds)

  1. SVM: Separating hyperplane for unbalanced class...

    0 ]] clusters_std = [ 1.5 , 0.5 ] X , y = make_blobs (...kernel = "linear" , C = 1.0 ) clf . fit ( X , y ) # fit...
    scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html
    Mon Dec 15 15:02:33 GMT 2025
      93.6K bytes
      Cache
     
  2. GaussianProcessClassifier — scikit-learn ...

    1, 3.2, and 5.1 from [RW2006] . Internally,...None is passed, the kernel “1.0 * RBF(1.0)” is used as default. Note...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html
    Mon Dec 15 15:02:31 GMT 2025
      149.1K bytes
      Cache
     
  3. 7.3. Preprocessing data — scikit-learn 1....

    1. , 0.1], [4.4, 2.2, 1.1, 0.1], [4.4, 2.2, 1.2, 0.1], ...,...0. , -1.22, 1.33 ], [ 1.22, 0. , -0.267], [-1.22, 1.22, -1.06 ]])...
    scikit-learn.org/stable/modules/preprocessing.html
    Mon Dec 15 15:02:33 GMT 2025
      198.2K bytes
      Cache
     
  4. Joint feature selection with multi-task Lasso &...

    ylim ([ - 1.1 , 1.1 ]) plt . show () Total running...(( 1.0 + rng . randn ( 1 )) * times + 3 * rng . randn ( 1 ))...
    scikit-learn.org/stable/auto_examples/linear_model/plot_multi_task_lasso_support.html
    Mon Dec 15 15:02:30 GMT 2025
      99.3K bytes
      Cache
     
  5. Exponentiation — scikit-learn 1.8.0 docum...

    predict ( X [: 1 ,:], return_std = True ) (array([635.5]),...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Exponentiation.html
    Mon Dec 15 15:02:31 GMT 2025
      123.5K bytes
      Cache
     
  6. Importance of Feature Scaling — scikit-le...

    it has a standard deviation of 1 and a mean of 0. Even if tree...variable “hue” varies between 1 and 10. Because of this, distances...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
    Mon Dec 15 15:02:31 GMT 2025
      122.7K bytes
      Cache
     
  7. Faces recognition example using eigenfaces and ...

    1 )[ - 1 ] true_name = target_names.... rsplit ( " " , 1 )[ - 1 ] return "predicted:...
    scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
    Mon Dec 15 15:02:31 GMT 2025
      112.9K bytes
      Cache
     
  8. 7.2. Feature extraction — scikit-learn 1....

    array([[1, 1, 1, 0, 1, 1, 1, 0], [1, 1, 0, 1, 1, 1, 0, 1]]) In...array([[0, 1, 1, 1, 0, 0, 1, 0, 1], [0, 1, 0, 1, 0, 2, 1, 0, 1], [1,...
    scikit-learn.org/stable/modules/feature_extraction.html
    Mon Dec 15 15:02:33 GMT 2025
      146.1K bytes
      Cache
     
  9. Demo of OPTICS clustering algorithm — sci...

    subplot ( G [ 1 , 0 ]) ax3 = plt . subplot ( G [ 1 , 1 ]) ax4 = plt...labels_ == - 1 , 0 ], X [ clust . labels_ == - 1 , 1 ], "k+"...
    scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
    Mon Dec 15 15:02:30 GMT 2025
      107.2K bytes
      Cache
     
  10. SGD: convex loss functions — scikit-learn...

    >= - 1 ] = ( 1 - z [ z >= - 1 ]) ** 2 loss [ z >= 1.0 ]...([ xmin , 0 , 0 , xmax ], [ 1 , 1 , 0 , 0 ], color = "gold"...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html
    Mon Dec 15 15:02:30 GMT 2025
      92.2K bytes
      Cache
     
Back to Top