Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 611 - 620 of 3,757 for 1 (0.2 sec)

  1. sklearn.dummy — scikit-learn 1.7.2 documentation

    Dummy estimators that implement simple rules of thumb. User guide. See the Metrics and scoring: quantifying the quality of predictions section for further details.
    scikit-learn.org/stable/api/sklearn.dummy.html
    Wed Sep 17 19:57:58 UTC 2025
      114.6K bytes
      Cache
     
  2. sklearn.multiclass — scikit-learn 1.7.2 documen...

    Multiclass learning algorithms. one-vs-the-rest / one-vs-all, one-vs-one, error correcting output codes. The estimators provided in this module are meta-estimators: they require a base estimator to...
    scikit-learn.org/stable/api/sklearn.multiclass.html
    Wed Sep 17 19:58:00 UTC 2025
      116.4K bytes
      Cache
     
  3. sklearn.mixture — scikit-learn 1.7.2 documentation

    Mixture modeling algorithms. User guide. See the Gaussian mixture models section for further details.
    scikit-learn.org/stable/api/sklearn.mixture.html
    Wed Sep 17 19:58:00 UTC 2025
      114.4K bytes
      Cache
     
  4. Semi Supervised Classification — scikit-learn 1...

    Examples concerning the sklearn.semi_supervised module. Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset Effect of varying threshold for self-training Label Propagati...
    scikit-learn.org/stable/auto_examples/semi_supervised/index.html
    Wed Sep 17 19:57:59 UTC 2025
      77.1K bytes
      Cache
     
  5. sklearn.tree — scikit-learn 1.7.2 documentation

    Decision tree based models for classification and regression. User guide. See the Decision Trees section for further details. Exporting: Plotting:
    scikit-learn.org/stable/api/sklearn.tree.html
    Wed Sep 17 19:57:59 UTC 2025
      116.9K bytes
      Cache
     
  6. sklearn.utils — scikit-learn 1.7.2 documentation

    Various utilities to help with development. Developer guide. See the Utilities for Developers section for further details. Input and parameter validation: Functions to validate input and parameters...
    scikit-learn.org/stable/api/sklearn.utils.html
    Wed Sep 17 19:58:00 UTC 2025
      149.5K bytes
      Cache
     
  7. mean_shift — scikit-learn 1.7.2 documentation

    array ([[ 1 , 1 ], [ 2 , 1 ], [ 1 , 0 ], ... [ 4 , 7...array([[3.33, 6. ], [1.33, 0.66]]) >>> labels array([1, 1, 1, 0, 0, 0])...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.mean_shift.html
    Wed Sep 17 19:57:58 UTC 2025
      111.9K bytes
      Cache
     
  8. Polynomial and Spline interpolation — scikit-le...

    [ 1 , x_1 , x_1 ** 2 , x_1 ** 3 , ... , x_1 ** degree...), ... ], [ basis_1 ( x_1 ), basis_2 ( x_1 ), ... ], ... ] This...
    scikit-learn.org/stable/auto_examples/linear_model/plot_polynomial_interpolation.html
    Wed Sep 17 19:58:00 UTC 2025
      121.3K bytes
      Cache
     
  9. set_config — scikit-learn 1.7.2 documentation

    Added in version 1.1. enable_cython_pairwise_dist...configuration setting. Added in version 1.1. array_api_dispatch bool, default=None...
    scikit-learn.org/stable/modules/generated/sklearn.set_config.html
    Wed Sep 17 19:57:58 UTC 2025
      121.5K bytes
      Cache
     
  10. SVM Margins Example — scikit-learn 1.7.2 docume...

    0 ] * 20 + [ 1 ] * 20 # figure number fignum = 1 # fit the model...is sqrt(1+a^2) away vertically in # 2-d. margin = 1 / np . sqrt...
    scikit-learn.org/stable/auto_examples/svm/plot_svm_margin.html
    Wed Sep 17 19:57:59 UTC 2025
      99.9K bytes
      Cache
     
Back to top