Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 291 - 300 of 3,451 for 1 (0.08 sec)

  1. Pixel importances with a parallel forest of tre...

    -1 means use all available cores. n_jobs = - 1 Load the...RandomForestClassifi(n_estimators=750, n_jobs=-1, random_state=42) In a Jupyter...
    scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances_faces.html
    Thu Oct 31 11:00:34 UTC 2024
      101.2K bytes
      Cache
     
  2. all_estimators — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub all_estimators # sklearn.utils.discovery. all_estimators ( type_filt...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_estimators.html
    Wed Oct 30 20:01:21 UTC 2024
      108.1K bytes
      Cache
     
  3. gen_batches — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub gen_batches # sklearn.utils. gen_batches ( n , batch_size , * , min_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.gen_batches.html
    Wed Oct 30 20:01:21 UTC 2024
      107.1K bytes
      Cache
     
  4. sklearn.multioutput — scikit-learn 1.5.2 docume...

    Multioutput regression and classification. The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their constructor. The meta-estimator extends ...
    scikit-learn.org/stable/api/sklearn.multioutput.html
    Wed Oct 30 20:01:21 UTC 2024
      115.1K bytes
      Cache
     
  5. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Thu Oct 31 11:00:32 UTC 2024
      79.6K bytes
      Cache
     
  6. sklearn.ensemble — scikit-learn 1.5.2 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Thu Oct 31 11:00:32 UTC 2024
      120K bytes
      Cache
     
  7. load_linnerud — scikit-learn 1.5.2 documentation

    Skip to main content Back to top Ctrl + K GitHub load_linnerud # sklearn.datasets. load_linnerud ( * , return_X_y = F...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html
    Thu Oct 31 11:00:32 UTC 2024
      109.1K bytes
      Cache
     
  8. sklearn.covariance — scikit-learn 1.5.2 documen...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Thu Oct 31 11:00:34 UTC 2024
      118.5K bytes
      Cache
     
  9. sklearn.inspection — scikit-learn 1.5.2 documen...

    Tools for model inspection. User guide. See the Inspection section for further details. Plotting:
    scikit-learn.org/stable/api/sklearn.inspection.html
    Thu Oct 31 11:00:34 UTC 2024
      114.8K bytes
      Cache
     
  10. sklearn.manifold — scikit-learn 1.5.2 documenta...

    Data embedding techniques. User guide. See the Manifold learning section for further details.
    scikit-learn.org/stable/api/sklearn.manifold.html
    Thu Oct 31 11:00:32 UTC 2024
      116K bytes
      Cache
     
Back to top