- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 2791 - 2800 of 5,547 for * (5.77 sec)
-
NotFittedError — scikit-learn 1.7.2 documentation
LinearSVC () . predict ([[ 1 , 2 ], [ 2 , 3 ], [ 3 , 4 ]]) ... except...NotFittedError as e : ... print ( repr ( e )) NotFittedError("This LinearSVC...scikit-learn.org/stable/modules/generated/sklearn.exceptions.NotFittedError.html -
scale — scikit-learn 1.7.2 documentation
array([[-1., 1., 1.], [ 1., -1., -1.]]) >>> scale ( X , axis...0.98], [-1.22, 0. , 1.22]]) On this page This Page...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html -
all_estimators — scikit-learn 1.7.2 documentation
fier'>), ('BaggingClassifier', <class 'sklearn.ensemble._bag...<class 'sklearn.linear_model._bayes.ARDRegression'>), ('AdaBoostRegressor',...scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_estimators.html -
delayed — scikit-learn 1.7.2 documentation
sklearn.utils.fixes to sklearn.utils.parallel in scikit-learn 1.3....Ctrl + K GitHub Choose version delayed # sklearn.utils.parallel....scikit-learn.org/stable/modules/generated/sklearn.utils.parallel.delayed.html -
RegressorTags — scikit-learn 1.7.2 documentation
n_informative=1, bias=5.0, noise=20, random_state=42) . The dataset...R2 of 0.5 on make_regression(n_samples=200, n_features=10, n_informative=1,...scikit-learn.org/stable/modules/generated/sklearn.utils.RegressorTags.html -
estimator_html_repr — scikit-learn 1.7.2 docume...
estimator_html_repr ( LogisticRegression ()) '<style>#sk-container-id...' On this...sklearn.utils. estimator_html_repr ( estimator ) [source] # Build a...scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_html_repr.html -
Ledoit-Wolf vs OAS estimation — scikit-learn 1....
oa_mse . mean ( 1 ), yerr = oa_mse . std ( 1 ), label = "OAS" , color...( 1 ), label = "Ledoit-Wolf" , color = "navy" , lw = 2 , ) plt...scikit-learn.org/stable/auto_examples/covariance/plot_lw_vs_oas.html -
Plot randomly generated multilabel dataset — sc...
Class P(C) P(w0|C) P(w1|C) red 0.32 0.55 0.45 blue 0.26 0.79 0.21...= np . array ( [ "!" , "#FF3333" , # red "#0198E1" , # blue "#BF5FFF"...scikit-learn.org/stable/auto_examples/datasets/plot_random_multilabel_dataset.html -
Out-of-core classification of text documents — ...
'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL...sub ( r "\s+" , r " " , self . body ) self . docs . append ( { "title"...scikit-learn.org/stable/auto_examples/applications/plot_out_of_core_classification.html -
Tweedie regression on insurance claims — scikit...
Third-Party Liability Claims dataset. Parameters ---------- n_samples:...() * 0.8 p2 = ax . fill_between ( df_ . index , 0 , y_max * df_...scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html