- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 241 - 250 of 1,971 for = (0.06 sec)
-
make_sparse_spd_matrix — scikit-learn 1.7.2 doc...
make_sparse_spd_matrix ( n_dim = 1 , * , alpha = 0.95 , norm_diag = False , smallest_coef...smallest_coef = 0.1 , largest_coef = 0.9 , sparse_format = None , random_state...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html -
OAS — scikit-learn 1.7.2 documentation
multivariate_normal ( mean = [ 0 , 0 ], ... cov = real_cov , ... size = 500 ) >>>...comp_cov , norm = 'frobenius' , scaling = True , squared = True ) [source]...scikit-learn.org/stable/modules/generated/sklearn.covariance.OAS.html -
MultiOutputRegressor — scikit-learn 1.7.2 docum...
y = load_linnerud ( return_X_y = True ) >>> regr = MultiOutputRegressor...MultiOutputRegressor ( estimator , * , n_jobs = None ) [source] # Multi target...scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html -
databaseInfoMap | DBFlute
variousMap = map: { ; columnExceptMap = map :{ ; GENMAI = list:{...db?allowPublicKeyRetrie=true&sslMode=DISABLED ... } catalog ...dbflute.seasar.org/ja/manual/reference/dfprop/databaseinfo/ -
Comparison of F-test and mutual information — s...
fontsize = 14 ) if i == 0 : plt . ylabel ( "$y$" , fontsize = 14 )...seed ( 0 ) X = np . random . rand ( 1000 , 3 ) y = X [:, 0 ] +...scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html -
PredefinedSplit — scikit-learn 1.7.2 documentation
Train: index=[1 2 3] Test: index=[0] Fold 1: Train: index=[0 2] Test:...get_n_splits ( X = None , y = None , groups = None ) [source]...scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html -
top_k_accuracy_score — scikit-learn 1.7.2 docum...
normalize == True and the number of samples with normalize == False...y_score , * , k = 2 , normalize = True , sample_weight = None , labels...scikit-learn.org/stable/modules/generated/sklearn.metrics.top_k_accuracy_score.html -
Plot Hierarchical Clustering Dendrogram — sciki...
distance_threshold = 0 , n_clusters = None ) model = model . fit (...current_count += 1 # leaf node else : current_count += counts [ child_idx...scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html -
make_low_rank_matrix — scikit-learn 1.7.2 docum...
n_samples = 100 , n_features = 100 , * , effective_rank = 10 , tail_strength...n_features = 25 , ... effective_rank = 5 , ... tail_strength = 0.01...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html -
train_test_split — scikit-learn 1.7.2 documenta...
test_size = None , train_size = None , random_state = None , shuffle...iris = datasets . load_iris ( as_frame = True ) >>> X , y = iris...scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html