- Sort Score
- Num 10 results
- Language All
- Labels All
Results 231 - 240 of over 10,000 for 2 (0.4 seconds)
-
2.9. Neural network models (unsupervised) ̵...
version 2.9. Neural network models (unsupervised) # 2.9.1. Restricted...Gibbs sampling for inference. 2.9.1.2. Bernoulli Restricted Boltzmann...scikit-learn.org/stable/modules/neural_networks_unsupervised.html -
1.12. Multiclass and multioutput algorithms ...
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...scikit-learn.org/stable/modules/multiclass.html -
Nystroem — scikit-learn 1.7.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html -
TweedieRegressor — scikit-learn 1.7.2 doc...
determination R^2. R^2 uses squared error and D^2 uses the deviance...() >>> X = [[ 1 , 2 ], [ 2 , 3 ], [ 3 , 4 ], [ 4 , 3...scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html -
load_wine — scikit-learn 1.7.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html -
Hyperparameter — scikit-learn 1.7.2 docum...
scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Hyperparameter.html -
GammaRegressor — scikit-learn 1.7.2 docum...
determination R^2. R^2 uses squared error and D^2 uses the deviance...() >>> X = [[ 1 , 2 ], [ 2 , 3 ], [ 3 , 4 ], [ 4 , 3...scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html -
TargetEncoder — scikit-learn 1.7.2 docume...
for 2 features (f) and 3 classes (c),...] * 5 + [ 20.1 ] * 25 + [ 21.2 ] * 8 + [ 49 ] * 30 >>>...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html -
locally_linear_embedding — scikit-learn 1...
(n_components + 1) / 2. see reference [2] modified use the modified...n_components = 2 ) >>> embedding . shape (100, 2) Gallery...scikit-learn.org/stable/modules/generated/sklearn.manifold.locally_linear_embedding.html -
median_absolute_error — scikit-learn 1.7....
2 , 7 ] >>> y_pred = [ 2.5 , 0.0 , 2 , 8 ] >>>...>>> y_pred = [[ 0 , 2 ], [ - 1 , 2 ], [ 8 , - 5 ]] >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html