- Sort Score
- Num 10 results
- Language All
- Labels All
Results 231 - 240 of over 10,000 for 2 (0.12 seconds)
-
Elastic Cloud on Kubernetes [2.12] | Elastic
Kubernetes: 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.9 2.8 2.7 2.6 2.5 2.4...2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0-beta...www.elastic.co/guide/en/cloud-on-k8s/2.12/index.html -
Elastic Cloud on Kubernetes [2.9] | Elastic
Kubernetes: 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.9 2.8 2.7 2.6 2.5 2.4...2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0-beta...www.elastic.co/guide/en/cloud-on-k8s/2.9/index.html -
Elastic Cloud on Kubernetes [2.6] | Elastic
Kubernetes: 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.9 2.8 2.7 2.6 2.5 2.4...2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0-beta...www.elastic.co/guide/en/cloud-on-k8s/2.6/index.html -
1.4. Support Vector Machines — scikit-lea...
[ 2 , 2 ]] >>> y = [ 0.5 , 2.5 ] >>>...>>> clf . predict ([[ 2. , 2. ]]) array([1]) SVMs decision...scikit-learn.org/stable/modules/svm.html -
RFE — scikit-learn 1.7.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html -
GaussianProcessClassifier — scikit-learn ...
2, and 5.1 from [RW2006] . Internally,...>>> gpc . predict_proba ( X [: 2 ,:]) array([[0.83548752, 0.03228706,...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html -
Elastic Cloud on Kubernetes [2.7] | Elastic
Kubernetes: 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.9 2.8 2.7 2.6 2.5 2.4...2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0-beta...www.elastic.co/guide/en/cloud-on-k8s/2.7/index.html -
Contributing — scikit-learn 1.7.2 documen...
cd scikit-learn Follow steps 2-6 in Building from source to build...pytest pytest-cov ruff == 0 .11.2 mypy numpydoc Add the upstream...scikit-learn.org/stable/developers/contributing.html -
1.10. Decision Trees — scikit-learn 1.7.2...
[ 2 , 2 ]] >>> y = [ 0.5 , 2.5 ] >>>...>>> clf . predict ([[ 2. , 2. ]]) array([1]) In case that...scikit-learn.org/stable/modules/tree.html -
FactorAnalysis — scikit-learn 1.7.2 docum...
default=1e-2 Stopping tolerance for log-likelihood...Machine Learning, Chapter 12.2.4. Examples >>> from...scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html