Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 231 - 240 of 1,992 for = (0.59 sec)

  1. SkewedChi2Sampler — scikit-learn 1.6.1 document...

    skewedness = 1.0 , n_components = 100 , random_state = None ) [source]...n_components = 10 , ... random_state = 0 ) >>> X_features = chi2_feature...
    scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html
    Sat Apr 19 00:31:22 UTC 2025
      130.2K bytes
      Cache
     
  2. jaccard_score — scikit-learn 1.6.1 documentation

    labels = None , pos_label = 1 , average = 'binary' , sample_weight...sample_weight = None , zero_division = 'warn' ) [source] # Jaccard...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.jaccard_score.html
    Sat Apr 19 00:31:21 UTC 2025
      120.8K bytes
      Cache
     
  3. Label Propagation digits: Demonstrating perform...

    n_total_samples = len ( y ) n_labeled_points = 40 indices = np . arange...lp_model = LabelSpreading ( gamma = 0.25 , max_iter = 20 ) lp_model...
    scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits.html
    Sat Apr 19 00:31:20 UTC 2025
      99.3K bytes
      Cache
     
  4. Column Transformer with Mixed Types — scikit-le...

    y = fetch_openml ( "titanic" , version = 1 , as_frame = True...attribute: # X = titanic.frame.drop('survived', axis=1) # y = titanic.frame['survived']...
    scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html
    Sat Apr 19 00:31:20 UTC 2025
      186.1K bytes
      Cache
     
  5. Gradient Boosting regularization — scikit-learn...

    test_size = 0.8 , random_state = 0 ) original_params = { "n_estimators"...color = color , label = label , ) plt . legend ( loc = "upper...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html
    Sat Apr 19 00:31:20 UTC 2025
      96.2K bytes
      Cache
     
  6. 5. Visualizations — scikit-learn 1.6.1 document...

    y = load_wine ( return_X_y = True ) y = y == 2 # make...y_test = train_test_split ( X , y , random_state = 42 ) svc = SVC...
    scikit-learn.org/stable/visualizations.html
    Sat Apr 19 00:31:21 UTC 2025
      43.3K bytes
      Cache
     
  7. A demo of the Spectral Co-Clustering algorithm ...

    n_clusters = 5 , noise = 5 , shuffle = False , random_state = 0 ) plt..., rows , columns = make_biclusters ( shape = ( 300 , 300 ), n_clusters...
    scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html
    Sat Apr 19 00:31:20 UTC 2025
      93.1K bytes
      1 views
      Cache
     
  8. Probability calibration of classifiers — scikit...

    ): this_X = X_train [ y_train == this_y ] this_sw = sw_train [...n_samples = n_samples , centers = centers , shuffle = False , random_state...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration.html
    Sat Apr 19 00:31:22 UTC 2025
      109.3K bytes
      Cache
     
  9. Comparing random forests and the multi-output m...

    edgecolor = "k" , c = "navy" , s = s , marker = "s" , alpha = a , label...edgecolor = "k" , c = "c" , s = s , marker = "^" , alpha = a , label...
    scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html
    Sat Apr 19 00:31:22 UTC 2025
      98.6K bytes
      Cache
     
  10. DetCurveDisplay — scikit-learn 1.6.1 documentation

    sample_weight = None , pos_label = None , name = None , ax = None ,..., test_size = 0.4 , random_state = 0 ) >>> clf = SVC ( random_state...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.DetCurveDisplay.html
    Sat Apr 19 00:31:21 UTC 2025
      135.3K bytes
      Cache
     
Back to top