- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1491 - 1500 of 4,807 for * (1.57 sec)
-
LassoCV — scikit-learn 1.7.1 documentation
is: ( 1 / ( 2 * n_samples )) * || y - Xw ||^ 2_2 + alpha * ||...sklearn.linear_model. LassoCV ( * , eps = 0.001 , n_alphas = 'deprecated' , alphas...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html -
train_test_split — scikit-learn 1.7.1 documenta...
2 1 4.9 3.0 1.4 0.2 2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0...5.0 3.6 1.4 0.2 >>> y . head () 0 0 1 0 2 0 3 0 4 0 ... >>> X_train...scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html -
accuracy_score — scikit-learn 1.7.1 documentation
accuracy_score ( np . array ([[ 0 , 1 ], [ 1 , 1 ]]), np . ones (( 2 , 2...y_pred = [ 0 , 2 , 1 , 3 ] >>> y_true = [ 0 , 1 , 2 , 3 ] >>> accuracy_score...scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html -
LogisticRegressionCV — scikit-learn 1.7.1 docum...
‘l2’ yes ‘newton-cholesky’ ‘l2’, yes ‘sag’ ‘l2’, yes ‘saga’ ‘elasticnet’,...multiclass ‘lbfgs’ ‘l2’ yes ‘liblinear’ ‘l1’, ‘l2’ no ‘newton-cg’ ‘l2’...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html -
MultinomialNB — scikit-learn 1.7.1 documentation
size = ( 6 , 100 )) >>> y = np . array ([ 1 , 2 , 3 , 4 , 5 , 6 ])...Press, pp. 234-265. https://nlp.stanford.edu/IR-book/html/html...scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html -
grid_search.rst.txt
[1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},...= [ {'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1,...scikit-learn.org/stable/_sources/modules/grid_search.rst.txt -
CalibratedClassifierCV — scikit-learn 1.7.1 doc...
version 1.2. method {‘sigmoid’, ‘isotonic’}, default=’sigmoid’ The...version 0.24. ensemble bool, or “auto”, default=”auto” Determines...scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html -
TransformerMixin — scikit-learn 1.7.1 documenta...
None ): ... return self ... def transform ( self , X ): ... return...array([1, 1, 1]) fit_transform ( X , y = None , ** fit_params ) [source]...scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html -
CountVectorizer — scikit-learn 1.7.1 documentation
ngram_range=(1 , 1) , analyzer='word' , max_df=1.0 , min_df=1 , max_features=None...analyzer {‘word’, ‘char’, ‘char_wb’} or callable, default=’word’ Whether...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html -
BaseEstimator — scikit-learn 1.7.1 documentation
BaseEstimator ): ... def __init__ ( self , * , param = 1 ): ... self ....2 ], [ 2 , 3 ], [ 3 , 4 ]]) >>> y = np . array ([ 1 , 0 , 1 ])...scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html