- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1441 - 1450 of 8,717 for 2 (0.58 seconds)
-
BayesianRidge — scikit-learn 1.8.0 docume...
[ 2 , 2 ]], [ 0 , 1 , 2 ]) BayesianRidge() >>>...float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html -
Release History — scikit-learn 1.8.0 docu...
2 Version 1.3.1 Version 1.3.0 Version 1.2 Version 1.2.2 Version...Version 1.2.1 Version 1.2.0 Version 1.1 Version 1.1.3 Version...scikit-learn.org/stable/whats_new.html -
ロールベース検索の設定
2 11.1 11.0 10.3 10.2 10.1 10.0 9.4 9.3 9.2 9.1 9.0 8.0...13.4 13.3 13.2 13.1 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0...fess.codelibs.org/ja/14.19/config/role-setting.html -
manhattan_distances — scikit-learn 1.8.0 ...
2 ], [ 3 , 4 ]], [[ 1 , 2 ], [ 0 , 3 ]]) array([[0., 2.],...manhattan_distances ([[ 3 ]], [[ 2 ]]) array([[1.]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html -
SGDRegressor — scikit-learn 1.8.0 documen...
loss/||x||**2) . ‘pa2’: passive-aggressive algorithm 2, see [1]...eta = hinge_loss / (||x||**2 + 1/(2 eta0)) . Added in version...scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html -
システム関連の設定
2 11.1 11.0 10.3 10.2 10.1 10.0 9.4 9.3 9.2 9.1 9.0 8.0...13.4 13.3 13.2 13.1 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0...fess.codelibs.org/ja/15.2/config/system.html -
JSONによる検索結果の出力
2 11.1 11.0 10.3 10.2 10.1 10.0 9.4 9.3 9.2 9.1 9.0 8.0...13.4 13.3 13.2 13.1 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0...fess.codelibs.org/ja/4.0/user/json-response.html -
LassoLarsCV — scikit-learn 1.8.0 document...
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...n_jobs = None , eps = np.float64(2.220446049250313e-16) , copy_X...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html -
IsolationForest example — scikit-learn 1....
2 ) @ covariance + np . array ([ 2 , 2 ]) # general...randn ( n_samples , 2 ) + np . array ([ - 2 , - 2 ]) # spherical outliers...scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html -
LocallyLinearEmbedding — scikit-learn 1.8...
(n_components + 1) / 2 . see reference [2] modified : use the...n_neighbors = 5 , n_components = 2 , reg = 0.001 , eigen_solver =...scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html