- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 1271 - 1280 of 2,016 for = (0.24 sec)
-
Visualization of MLP weights on MNIST — scikit-...
max_iter = 8 , alpha = 1e-4 , solver = "sgd" , verbose = 10 , random_state...return_X_y = True , as_frame = False ) X = X / 255.0 # Split data...scikit-learn.org/stable/auto_examples/neural_networks/plot_mnist_filters.html -
incr_mean_variance_axis — scikit-learn 1.7.0 do...
axis = 0 , last_mean = np . zeros ( 3 ), last_var = np . zeros...(n_features,) if axis=0 or (n_samples,) if axis=1. last_var ndarray...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.incr_mean_variance_axis.html -
check_X_y — scikit-learn 1.7.0 documentation
accept_sparse = False , * , accept_large_sparse = True , dtype = 'numeric'...'numeric' , order = None , copy = False , force_writeable = False , force_all_finite...scikit-learn.org/stable/modules/generated/sklearn.utils.check_X_y.html -
make_spd_matrix — scikit-learn 1.7.0 documentation
make_spd_matrix ( n_dim = 2 , random_state = 42 ) array([[2.093,...make_spd_matrix ( n_dim , * , random_state = None ) [source] # Generate a random...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html -
"They were innovative in their time." | MetaFilter
<div class="svg-sprite" id="svg-sprite-container" style="display:none"></div>...type="text/javascript"> !function() { var static_server = 'dh...www.metafilter.com/209265/They-were-innovative-in-their-time -
「※1件でもOK入力は5項目!♪★最寄り駅・よく使用する駅の口コミ募集★11/18〆」の仕事依...
jobhub.jp/jobs/40961 -
「※1件でもOK入力は5項目!♪★最寄り駅・よく使用する駅の口コミ募集★3/18〆」の仕事依頼...
jobhub.jp/jobs/42391 -
「※1件でもOK入力は5項目!♪★最寄り駅・よく使用する駅の口コミ募集★1/17〆」の仕事依頼...
jobhub.jp/jobs/41600 -
partial_dependence — scikit-learn 1.7.0 documen...
sample_weight = None , categorical_features = None , feature_names = None...grid_resolution = 100 , custom_values = None , method = 'auto' , kind...scikit-learn.org/stable/modules/generated/sklearn.inspection.partial_dependence.html -
Decision boundary of semi-supervised classifier...
base_classifier = SVC ( kernel = "rbf" , gamma = 0.5 , probability = True...] y = iris . target # step size in the mesh h = 0.02 rng = np...scikit-learn.org/stable/auto_examples/semi_supervised/plot_semi_supervised_versus_svm_iris.html