Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1161 - 1170 of 2,295 for 2 (0.14 sec)

  1. Probability Calibration curves — scikit-learn 1...

    add_subplot ( gs [: 2 , : 2 ]) calibration_displays = {}...histogram grid_positions = [( 2 , 0 ), ( 2 , 1 ), ( 3 , 0 ), ( 3 ,...
    scikit-learn.org/stable/auto_examples/calibration/plot_calibration_curve.html
    Thu Jun 12 16:15:28 UTC 2025
      143.5K bytes
      Cache
     
  2. Overview of multiclass training meta-estimators...

    code_size = 2 ) cv_results_tree = cross_validate..., X , y , cv = cv , n_jobs = 2 ) cv_results_ovo = cross_validate...
    scikit-learn.org/stable/auto_examples/multiclass/plot_multiclass_overview.html
    Thu Jun 12 16:15:27 UTC 2025
      114.3K bytes
      Cache
     
  3. Multi-dimensional scaling — scikit-learn 1.7.0 ...

    X_true ** 2 ) . sum ()) / np . sqrt (( X_nmds ** 2 ) . sum ())...X_true = rng . randint ( 0 , 20 , 2 * n_samples ) . astype ( float...
    scikit-learn.org/stable/auto_examples/manifold/plot_mds.html
    Thu Jun 12 16:15:28 UTC 2025
      104.1K bytes
      Cache
     
  4. Tweedie regression on insurance claims — scikit...

    9900 2.015718e+02 2.015412e+02 2.015342e+02 2.015600e+02...abs. error 2.730129e+02 2.722124e+02 2.740176e+02 2.731633e+02...
    scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html
    Thu Jun 12 16:15:28 UTC 2025
      181.8K bytes
      Cache
     
  5. KernelCenterer — scikit-learn 1.7.0 documentation

    - 2. , 2. ], ... [ - 2. , 1. , 3. ], ... [ 4. , 1. , - 2. ]]...K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]])...
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KernelCenterer.html
    Thu Jun 12 16:15:29 UTC 2025
      132K bytes
      Cache
     
  6. Theil-Sen Regression — scikit-learn 1.7.0 docum...

    Linear model y = 3*x + N(2, 0.1**2) x = np . random . randn (...Linear model y = 3*x + N(2, 0.1**2) x = np . random . randn (...
    scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html
    Thu Jun 12 16:15:27 UTC 2025
      103.2K bytes
      Cache
     
  7. Version 0.14 — scikit-learn 1.7.0 documentation

    Roland 2 Diego Molla 2 Imran Haque 2 Jochen Wersdörfer 2 Sergey...Sergey Karayev 2 Yannick Schwartz 2 jamestwebber 1 Abhijeet Kolhe...
    scikit-learn.org/stable/whats_new/v0.14.html
    Thu Jun 12 16:15:27 UTC 2025
      64.7K bytes
      Cache
     
  8. Concentration Prior Type Analysis of Variation ...

    normalization eig_vals = 2 * np . sqrt ( 2 ) * np . sqrt ( eig_vals...= 0.8 ) ax1 . set_xlim ( - 2.0 , 2.0 ) ax1 . set_ylim ( - 3.0...
    scikit-learn.org/stable/auto_examples/mixture/plot_concentration_prior.html
    Thu Jun 12 16:15:27 UTC 2025
      112.1K bytes
      Cache
     
  9. manhattan_distances — scikit-learn 1.7.0 docume...

    2 ], [ 3 , 4 ]], [[ 1 , 2 ], [ 0 , 3 ]]) array([[0., 2.],...]], [[ 2 ]]) array([[1.]]) >>> manhattan_distances ([[ 2 ]], [[...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html
    Thu Jun 12 16:15:29 UTC 2025
      107.5K bytes
      Cache
     
  10. Ridge coefficients as a function of the L2 Regu...

    - X \beta \|^{2}_{2} + \alpha \| \beta \|^{2}_{2}\) where \(X\)...side (e.g. \(\|y - X\beta\|^{2}_{2}\) ) measures the squared difference...
    scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    Thu Jun 12 16:15:27 UTC 2025
      103.3K bytes
      Cache
     
Back to top