Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1161 - 1170 of 3,496 for 1 (0.18 sec)

  1. Faces recognition example using eigenfaces and ...

    1 )[ - 1 ] true_name = target_names...y_test [ i ]] . rsplit ( " " , 1 )[ - 1 ] return "predicted: %s \n...
    scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
    Sat Dec 28 01:59:46 UTC 2024
      113.6K bytes
      Cache
     
  2. SGD: Maximum margin separating hyperplane — sci...

    linspace ( - 1 , 5 , 10 ) yy = np . linspace ( - 1 , 5 , 10 ) X1...= p [ 0 ] levels = [ - 1.0 , 0.0 , 1.0 ] linestyles = [ "dashed"...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html
    Sat Dec 28 01:59:46 UTC 2024
      91.3K bytes
      Cache
     
  3. pair_confusion_matrix — scikit-learn 1.6.0 docu...

    1 , 1 ], [ 1 , 1 , 0 , 0 ]) array([[8,...pair_confusion_matrix ([ 0 , 0 , 1 , 2 ], [ 0 , 0 , 1 , 1 ]) array([[8, 2],...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.pair_confusion_matrix.html
    Sat Dec 28 01:59:46 UTC 2024
      109.9K bytes
      Cache
     
  4. sklearn.decomposition — scikit-learn 1.7.dev0 d...

    Matrix decomposition algorithms. These include PCA, NMF, ICA, and more. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. User guide. See the Decomposing...
    scikit-learn.org/dev/api/sklearn.decomposition.html
    Tue Dec 24 12:16:11 UTC 2024
      121.8K bytes
      Cache
      Similar Results (1)
     
  5. Gaussian Mixture Models — scikit-learn 1.6.0 do...

    Examples concerning the sklearn.mixture module. Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture Density Estimation for a Gaussian mixture GMM Initialization Methods GMM cov...
    scikit-learn.org/stable/auto_examples/mixture/index.html
    Sat Dec 28 01:59:46 UTC 2024
      78.1K bytes
      Cache
     
  6. check_X_y — scikit-learn 1.7.dev0 documentation

    ensure_min_samples = 1 , ensure_min_features = 1 , y_numeric = False...>>> X = [[ 1 , 2 ], [ 3 , 4 ], [ 5 , 6 ]] >>> y = [ 1 , 2 , 3 ]...
    scikit-learn.org/dev/modules/generated/sklearn.utils.check_X_y.html
    Mon Dec 09 18:03:45 UTC 2024
      115.9K bytes
      Cache
      Similar Results (1)
     
  7. __sklearn_is_fitted__ as Developer API — scikit...

    scikit-learn 1.6 Release Highlights for scikit-learn 1.6 Metadata...__init__ ( self , parameter = 1 ): self . parameter = parameter...
    scikit-learn.org/stable/auto_examples/developing_estimators/sklearn_is_fitted.html
    Sat Dec 28 01:59:46 UTC 2024
      90.9K bytes
      Cache
     
  8. Blind source separation using FastICA — scikit-...

    array ([[ 1 , 1 , 1 ], [ 0.5 , 2 , 1.0 ], [ 1.5 , 1.0 , 2.0 ]])...models , names ), 1 ): plt . subplot ( 4 , 1 , ii ) plt . title...
    scikit-learn.org/stable/auto_examples/decomposition/plot_ica_blind_source_separation.html
    Sat Dec 28 01:59:46 UTC 2024
      97.8K bytes
      Cache
     
  9. nan_euclidean_distances — scikit-learn 1.6.0 do...

    6] and [1, na, 4, 5] is: \[\sqrt{\frac{4}{2}((3-1)^2 + (6-5)^2)}\]...float ( "NaN" ) >>> X = [[ 0 , 1 ], [ 1 , nan ]] >>> nan_euclidean_distances...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.nan_euclidean_distances.html
    Sat Dec 28 01:59:46 UTC 2024
      111.2K bytes
      Cache
     
  10. paired_cosine_distances — scikit-learn 1.7.dev0...

    [ 1 , 1 , 1 ]] >>> Y = [[ 1 , 0 , 0 ], [ 1 , 1 , 0 ]] >>>...
    scikit-learn.org/dev/modules/generated/sklearn.metrics.pairwise.paired_cosine_distances.html
    Mon Dec 09 18:03:47 UTC 2024
      107.6K bytes
      Cache
      Similar Results (1)
     
Back to top