- Sort Score
- Num 10 results
- Language All
- Labels All
Results 1051 - 1060 of over 10,000 for 2 (0.28 seconds)
-
Matern — scikit-learn 1.8.0 documentation
\frac{1}{\Gamma(\nu)2^{\nu-1}}\Bigg( \frac{\sqrt{2\nu}}{l} d(x_i ,...the RBF kernel. When \(\nu = 1/2\) , the Matérn kernel becomes...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html -
Test an analyzer | Elastic Docs
"position": 2 }, { "token": "fox.",...: 0, "end_offset": 2, "type": "<ALPHANUM>",...www.elastic.co/docs/manage-data/data-store/text-analysis/test-an-analyzer -
PLSRegression — scikit-learn 1.8.0 docume...
[ 2. , 2. , 2. ], [ 2. , 5. , 4. ]] >>>...y = [[ 0.1 , - 0.2 ], [ 0.9 , 1.1 ], [ 6.2 , 5.9 ], [ 11.9 ,...scikit-learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html -
check_symmetric — scikit-learn 1.8.0 docu...
2 ], [ 1 , 0 , 1 ], [ 2 , 1 , 0 ]]) >>>...symmetric_array ) array([[0, 1, 2], [1, 0, 1], [2, 1, 0]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_symmetric.html -
mean_variance_axis — scikit-learn 1.8.0 d...
2 , 2 ]) >>> data = np . array ([ 8 , 1 , 2 , 5...>>> scale = np . array ([ 2 , 3 , 2 ]) >>> csr = sparse...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.mean_variance_axis.html -
mean_poisson_deviance — scikit-learn 1.8....
= [ 2 , 0 , 1 , 4 ] >>> y_pred = [ 0.5 , 0.5 , 2. , 2....2. ] >>> mean_poisson_deviance ( y_true , y_pred ) 1.4260......scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_poisson_deviance.html -
Gradient Boosting regression — scikit-lea...
2 , 2 ) # `labels` argument in boxplot...permutation methods identify the same 2 strongly predictive features but...scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html -
1.17. Neural network models (supervised) —...
predict ([[ 2. , 2. ], [ - 1. , - 2. ]]) array([1, 0])...coef in clf . coefs_ ] [(2, 5), (5, 2), (2, 1)] Currently, MLPClassifier...scikit-learn.org/stable/modules/neural_networks_supervised.html -
SVC — scikit-learn 1.8.0 documentation
[ - 2 , - 1 ], [ 1 , 1 ], [ 2 , 1 ]]) >>>...>>> y = np . array ([ 1 , 1 , 2 , 2 ]) >>> from sklearn.svm...scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html -
mean_absolute_percentage_error — scikit-l...
2 , 7 ] >>> y_pred = [ 2.5 , 0.0 , 2 , 8 ] >>>..., 0. , 2.4 , 7. ] >>> y_pred = [ 1.2 , 0.1 , 2.4 , 8....scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html