Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 1021 - 1030 of 3,230 for 1 (0.28 sec)

  1. Marvel Reference for 2.x and 1.x | Elastic

    x and 1.x: 2.1 Marvel Reference for 2.x and 1.x: 2.0 Marvel...Reference for 2.x and 1.x Marvel Reference for 2.x and 1.x: 2.4 Marvel...
    www.elastic.co/guide/en/marvel/index.html
    Mon Apr 28 19:19:06 UTC 2025
      9.4K bytes
      Cache
     
  2. assert_all_finite — scikit-learn 1.7.1 document...

    array ([ 1 , np . inf , np . nan , 4 ]) >>>...
    scikit-learn.org/stable/modules/generated/sklearn.utils.assert_all_finite.html
    Thu Jul 31 15:26:37 UTC 2025
      107.5K bytes
      Cache
     
  3. Sample pipeline for text feature extraction and...

    array([1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00,...1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06]), 'vect__max_df':...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html
    Sat Aug 02 00:15:35 UTC 2025
      168.1K bytes
      1 views
      Cache
     
  4. inplace_swap_row — scikit-learn 1.7.1 documenta...

    1 ) >>> csr . todense () matrix([[0,...
    scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.inplace_swap_row.html
    Sat Aug 02 00:15:38 UTC 2025
      108K bytes
      Cache
     
  5. Varying regularization in Multi-layer Perceptro...

    logspace ( - 1 , 1 , 5 ) classifiers = [] names..., y_max = X [:, 1 ] . min () - 0.5 , X [:, 1 ] . max () + 0.5...
    scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_alpha.html
    Sat Aug 02 00:15:35 UTC 2025
      109.1K bytes
      Cache
     
  6. Explicit feature map approximation for RBF kern...

    reshape ( - 1 , data . shape [ 1 ]) # title for the plots...y_max]. plt . subplot ( 1 , 3 , i + 1 ) Z = clf . predict ( flat_grid...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_kernel_approximation.html
    Sat Aug 02 00:15:37 UTC 2025
      124.4K bytes
      Cache
     
  7. Swiss Roll And Swiss-Hole Reduction — scikit-le...

    ) axs [ 1 ] . scatter ( sr_tsne [:, 0 ], sr_tsne [:, 1 ], c =...) axs [ 1 ] . scatter ( sh_tsne [:, 0 ], sh_tsne [:, 1 ], c =...
    scikit-learn.org/stable/auto_examples/manifold/plot_swissroll.html
    Sat Aug 02 00:15:37 UTC 2025
      100K bytes
      Cache
     
  8. Lasso model selection via information criteria ...

    lasso_lars_ic [ - 1 ] . criterion_ , n_samples , lasso_lars_ic [ - 1 ] . noise_variance_...lasso_lars_ic [ - 1 ] . alphas_ == lasso_lars_ic [ - 1 ] . alpha_ )[...
    scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html
    Sat Aug 02 00:15:35 UTC 2025
      100.2K bytes
      Cache
     
  9. 7.6. Random Projection — scikit-learn 1.7.1 doc...

    }}} & & 1 / 2s\\ 0 &\text{with probability} & 1 - 1 / s \\ +...New York, NY, USA, 245-250. 7.6.1. The Johnson-Lindenstrauss lemma...
    scikit-learn.org/stable/modules/random_projection.html
    Sat Aug 02 00:15:38 UTC 2025
      48.4K bytes
      Cache
     
  10. Poisson regression and non-normal loss — scikit...

    Region 0 1.0 1 0.10000 D 5 0 55 50 B12 'Regular' 1217 R82 1 3.0 1...1 0.77000 D 5 0 55 50 B12 'Regular' 1217 R82 2 5.0 1 0.75000...
    scikit-learn.org/stable/auto_examples/linear_model/plot_poisson_regression_non_normal_loss.html
    Sat Aug 02 00:15:35 UTC 2025
      172.7K bytes
      Cache
     
Back to top