- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 971 - 980 of 1,992 for = (0.07 sec)
-
KFold — scikit-learn 1.6.1 documentation
n_splits = 5 , * , shuffle = False , random_state = None ) [source]...KFold(n_splits=2, random_state=None, shuffle=False) >>> for i...scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html -
RFE — scikit-learn 1.6.1 documentation
n_features_to_select = None , step = 1 , verbose = 0 , importance_getter = 'auto'...X , y = make_friedman1 ( n_samples = 50 , n_features = 10 , random_state...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html -
Matern — scikit-learn 1.6.1 documentation
length_scale = 1.0 , length_scale_bounds = (1e-05, 100000.0) , nu = 1.5...>>> X , y = load_iris ( return_X_y = True ) >>> kernel = 1.0 * Matern...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html -
Probabilistic predictions with Gaussian process...
train_size = 50 rng = np . random . RandomState ( 0 ) X = rng . uniform...train_size ], c = "k" , label = "Train data" , edgecolors = ( 0 , 0 ,...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc.html -
FeatureUnion — scikit-learn 1.6.1 documentation
n_jobs = None , transformer_weights = None , verbose = False ,...union = FeatureUnion ([( "pca" , PCA ( n_components = 1 )), ......scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html -
set_config — scikit-learn 1.6.1 documentation
assume_finite = None , working_memory = None , print_changed_only = None...None , display = None , pairwise_dist_chunk_size = None , enabl...scikit-learn.org/stable/modules/generated/sklearn.set_config.html -
Principal Component Analysis (PCA) on Iris Data...
projection = "3d" , elev =- 150 , azim = 110 ) X_reduced = PCA ( n_components...PCA fig = plt . figure ( 1 , figsize = ( 8 , 6 )) ax = fig . add_subplot...scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html -
Detection error tradeoff (DET) curve — scikit-l...
n_features = 2 , n_redundant = 0 , n_informative = 2 , random_state...max_depth = 5 , n_estimators = 10 , max_features = 1 ), } Plot...scikit-learn.org/stable/auto_examples/model_selection/plot_det.html -
Ridge coefficients as a function of the L2 Regu...
w = make_regression ( n_samples = 100 , n_features = 10 ,...n_informative = 8 , coef = True , random_state = 1 ) # Obtain...scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html -
IsotonicRegression — scikit-learn 1.6.1 documen...
y_min = None , y_max = None , increasing = True , out_of_bounds...X , y = make_regression ( n_samples = 10 , n_features = 1 , random_state...scikit-learn.org/stable/modules/generated/sklearn.isotonic.IsotonicRegression.html