- Sort Score
- Num 10 results
- Language All
- Labels All
Results 951 - 960 of over 10,000 for 2 (0.94 seconds)
-
Demo of affinity propagation clustering algorit...
Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007 Generate sample data: Compute Affinity Propagation: Plot result: Total running ...scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html -
Comparison of F-test and mutual information ...
This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on t...scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html -
Map data to a normal distribution — sciki...
figaspect ( 2 )) axes = axes . flatten () axes_idxs..., 9 ), ( 1 , 4 , 7 , 10 ), ( 2 , 5 , 8 , 11 ), ( 12 , 15 , 18...scikit-learn.org/stable/auto_examples/preprocessing/plot_map_data_to_normal.html -
Principal Component Analysis (PCA) on Iris Data...
2 import mpl_toolkits.mplot3d #...X_reduced [:, 1 ], X_reduced [:, 2 ], c = iris . target , s = 40...scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html -
Scaling the regularization parameter for SVCs &...
logspace ( - 2.3 , - 1.3 , 10 ) train_sizes =...param_range = Cs , cv = cv , n_jobs = 2 , ) results [ label ] = test_scores...scikit-learn.org/stable/auto_examples/svm/plot_svm_scale_c.html -
8.13.2 release notes | Enterprise Search docume...
2 release notes IMPORTANT : This...the latest documentation . 8.13.2 release notes No changes since...www.elastic.co/guide/en/enterprise-search/8.19/release-notes-8.13.2.html -
Missing Value Imputation — scikit-learn 1...
Examples concerning the sklearn.impute module. Imputing missing values before building an estimator Imputing missing values with variants of IterativeImputerscikit-learn.org/stable/auto_examples/impute/index.html -
Kernel Density Estimation — scikit-learn ...
This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in ...scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html -
Support Vector Machines — scikit-learn 1....
Examples concerning the sklearn.svm module. One-class SVM with non-linear kernel (RBF) Plot classification boundaries with different SVM Kernels Plot different SVM classifiers in the iris dataset P...scikit-learn.org/stable/auto_examples/svm/index.html -
Classification of text documents using sparse f...
(training set) 1353 documents - 2.87MB (test set) 4 categories vectorize...= RidgeClassifier ( tol = 1e-2 , solver = "sparse_cg"...scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html