- Sort Score
- Num 10 results
- Language All
- Labels All
Results 941 - 950 of 7,575 for 2 (0.14 seconds)
-
SVM with custom kernel — scikit-learn 1.7...
: 2 ] # we only take the first two...""" We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """...scikit-learn.org/stable/auto_examples/svm/plot_custom_kernel.html -
GMM Initialization Methods — scikit-learn...
subplot ( 2 , len ( methods ) // 2 , n + 1 ) start =...figsize = ( 4 * len ( methods ) // 2 , 6 )) plt . subplots_adjust (...scikit-learn.org/stable/auto_examples/mixture/plot_gmm_init.html -
Comparing Nearest Neighbors with and without Ne...
2 ]] X_train , X_test , y_train...scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html -
移行 0.9.5.1 to 0.9.5.2 | DBFlute
dbflute.seasar.org/ja/environment/upgrade/migration/migrate0951to0952.html -
Label Propagation digits: Active learning ̵...
0 24 0] [ 0 0 0 0 2 1 0 2 2 27]] Iteration 2 __________ Label...0 0 0 0 0 25 0] [ 0 0 0 0 2 1 0 2 2 27]] Iteration 1 __________...scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_digits_active_learni... -
Robust vs Empirical covariance estimate —...
subplot ( 2 , 1 , 1 ) lw = 2 plt . errorbar ( range_n_outliers...font_prop ) plt . subplot ( 2 , 1 , 2 ) x_size = range_n_outliers...scikit-learn.org/stable/auto_examples/covariance/plot_robust_vs_empirical_covariance.html -
1.5. Stochastic Gradient Descent — scikit...
:= \frac{1}{2} \sum_{j=1}^{m} w_j^2 = ||w||_2^2\) , \(L_1\) norm:...>>> clf . predict ([[ 2. , 2. ]]) array([1]) SGD fits a...scikit-learn.org/stable/modules/sgd.html -
7.4. Imputation of missing values — sciki...
2. Univariate feature imputation...>>> imp . fit ([[ 1 , 2 ], [ np . nan , 3 ], [ 7 , 6 ]])...scikit-learn.org/stable/modules/impute.html -
Gaussian Mixture Model Sine Curve — sciki...
eigh ( covar ) v = 2.0 * np . sqrt ( 2.0 ) * np . sqrt ( v )...mean_precision_prior = 1e-2 , covariance_prior = 1e0 * np . eye ( 2 ), init_params...scikit-learn.org/stable/auto_examples/mixture/plot_gmm_sin.html -
Lagged features for time series forecasting ...
2 ± 4.0" "39.3 ± 2.8" "16.7..."92.5 ± 16.2" "5.9 ± 0.9" "46.2 ± 8.1"...scikit-learn.org/stable/auto_examples/applications/plot_time_series_lagged_features.html