Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 901 - 910 of 5,620 for * (2.61 sec)

  1. AdaBoostRegressor scikit-learn 1.7.2 document...

    predict ([[ 0 , 0 , 0 , 0 ]]) array([4.7972]) >>> regr . score ( X ,...{‘linear, square, exponential}, default=linear The loss function...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
    Wed Sep 10 13:46:55 UTC 2025
      144.8K bytes
      Cache
     
  2. normalized_mutual_info_score scikit-learn 1.7...

    fo_score ([ 0 , 0 , 1 , 1 ], [ 0 , 0 , 1 , 1 ]) 1.0 >>> norm...fo_score ([ 0 , 0 , 1 , 1 ], [ 1 , 1 , 0 , 0 ]) 1.0 If classes...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
    Wed Sep 10 13:46:53 UTC 2025
      112.4K bytes
      Cache
     
  3. cross_val_predict scikit-learn 1.7.2 document...

    instead. E.g.: cross_val_predict(..., params={'groups': groups})...2*n_jobs method {predict, predict_proba, predict_log_proba’,...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
    Wed Sep 10 13:46:55 UTC 2025
      120.3K bytes
      Cache
     
  4. mutual_info_score scikit-learn 1.7.2 document...

    = [ 0 , 1 , 1 , 0 , 1 , 0 ] >>> labels_pred = [ 0 , 1 , 0 , 0...switching \(U\) (i.e label_true ) with \(V\) (i.e. label_pred ) will...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.mutual_info_score.html
    Wed Sep 10 13:46:55 UTC 2025
      111.7K bytes
      Cache
     
  5. Pipeline scikit-learn 1.7.2 documentation

    'scaler' , StandardScaler ()), ( 'svc' , SVC ())]) >>> # The...train_test_split ( X , y , ... random_state = 0 ) >>> pipe = Pipeline ([( 'scaler'...
    scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
    Wed Sep 10 13:46:53 UTC 2025
      187.8K bytes
      Cache
     
  6. RandomForestRegressor scikit-learn 1.7.2 docu...

    “absolute_error, friedman_mse, poisson}, default=squared_error The...changed from 10 to 100 in 0.22. criterion {squared_error, absolute_error”,...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
    Wed Sep 10 13:46:55 UTC 2025
      170.5K bytes
      Cache
     
  7. MaxAbsScaler scikit-learn 1.7.2 documentation

    2. ], ... [ 2. , 0. , 0. ], ... [ 0. , 1. , - 1. ]] >>> transformer...transformer . transform ( X ) array([[ 0.5, -1. , 1. ], [ 1. , 0. , 0....
    scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
    Wed Sep 10 13:46:55 UTC 2025
      131.4K bytes
      Cache
     
  8. SimpleImputer scikit-learn 1.7.2 documentation

    transform ( X )) [[ 7. 2. 3. ] [ 4. 3.5 6. ] [10. 3.5 9. ]] For...imp_mean . fit ([[ 7 , 2 , 3 ], [ 4 , np . nan , 6 ], [ 10 , 5 , 9...
    scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
    Wed Sep 10 13:46:55 UTC 2025
      147K bytes
      Cache
     
  9. MLPClassifier scikit-learn 1.7.2 documentation

    function, returns f(x) = 1 / (1 + exp(-x)). tanh, the hyperbolic tan...function, returns f(x) = max(0, x) solver {lbfgs, sgd, adam’},...
    scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
    Wed Sep 10 13:46:55 UTC 2025
      165.7K bytes
      Cache
     
  10. RocCurveDisplay scikit-learn 1.7.2 documentation

    0.1 , 0.4 , 0.35 , 0.8 ]) >>> fpr , tpr , thresholds = metrics...np . array ([ 0 , 0 , 1 , 1 ]) >>> y_score = np . array ([ 0.1...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.RocCurveDisplay.html
    Wed Sep 10 13:46:53 UTC 2025
      170.5K bytes
      Cache
     
Back to top