Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 881 - 890 of 2,934 for 1 (0.09 sec)

  1. Precision-Recall — scikit-learn 1.7.2 documenta...

    1 , 2 ]) n_classes = Y . shape [ 1 ] # Split into...\(\text{AP} = \sum_n (R_n - R_{n-1}) P_n\) where \(P_n\) and \(R_n\)...
    scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
    Mon Nov 03 14:20:05 UTC 2025
      151.3K bytes
      Cache
     
  2. 11. Common pitfalls and recommended practices —...

    n_features = 1 , noise = 1 ) >>> X_train , X_test ,...applies to using None . 11.3.1.1. Estimators # Passing instances...
    scikit-learn.org/stable/common_pitfalls.html
    Mon Nov 03 14:20:03 UTC 2025
      102.9K bytes
      Cache
     
  3. 9. Computing with scikit-learn — scikit-learn 1...

    1.1. Scaling with instances using out-of-core...Computing with scikit-learn # 9.1. Strategies to scale computationally:...
    scikit-learn.org/stable/computing.html
    Mon Nov 03 14:20:04 UTC 2025
      31.4K bytes
      Cache
     
  4. all_estimators — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version all_estimators # sklearn.utils.discovery. all_estimat...
    scikit-learn.org/stable/modules/generated/sklearn.utils.discovery.all_estimators.html
    Sat Nov 01 09:15:33 UTC 2025
      109K bytes
      Cache
     
  5. gen_batches — scikit-learn 1.7.2 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version gen_batches # sklearn.utils. gen_batches ( n , batch_...
    scikit-learn.org/stable/modules/generated/sklearn.utils.gen_batches.html
    Sat Nov 01 09:15:34 UTC 2025
      108K bytes
      Cache
     
  6. Pipelines and composite estimators — scikit-lea...

    Examples of how to compose transformers and pipelines from other estimators. See the User Guide. Column Transformer with Heterogeneous Data Sources Column Transformer with Mixed Types Concatenating...
    scikit-learn.org/stable/auto_examples/compose/index.html
    Mon Nov 03 14:20:04 UTC 2025
      77.2K bytes
      Cache
     
  7. sklearn.ensemble — scikit-learn 1.7.2 documenta...

    Ensemble-based methods for classification, regression and anomaly detection. User guide. See the Ensembles: Gradient boosting, random forests, bagging, voting, stacking section for further details.
    scikit-learn.org/stable/api/sklearn.ensemble.html
    Mon Nov 03 14:20:04 UTC 2025
      120.9K bytes
      Cache
     
  8. sklearn.covariance — scikit-learn 1.7.2 documen...

    Methods and algorithms to robustly estimate covariance. They estimate the covariance of features at given sets of points, as well as the precision matrix defined as the inverse of the covariance. C...
    scikit-learn.org/stable/api/sklearn.covariance.html
    Mon Nov 03 14:20:04 UTC 2025
      119.4K bytes
      Cache
     
  9. sklearn.inspection — scikit-learn 1.7.2 documen...

    Tools for model inspection. User guide. See the Inspection section for further details. Plotting:
    scikit-learn.org/stable/api/sklearn.inspection.html
    Mon Nov 03 14:20:04 UTC 2025
      115.8K bytes
      Cache
     
  10. Generalized Linear Models — scikit-learn 1.7.2 ...

    Examples concerning the sklearn.linear_model module. Comparing Linear Bayesian Regressors Curve Fitting with Bayesian Ridge Regression Decision Boundaries of Multinomial and One-vs-Rest Logistic Re...
    scikit-learn.org/stable/auto_examples/linear_model/index.html
    Mon Nov 03 14:20:04 UTC 2025
      93.7K bytes
      Cache
     
Back to top