- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 801 - 810 of 2,956 for 1 (0.09 sec)
-
randomized_svd — scikit-learn 1.6.1 documentation
approximation problem described in [1] (problem (1.5), p5). Refer to Wikipedia...n_iter=0 or 1 should even work fine in theory (see [1] page 9)....scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.randomized_svd.html -
coverage_error — scikit-learn 1.6.1 documentation
y_true = [[ 1 , 0 , 0 ], [ 0 , 1 , 1 ]] >>> y_score = [[ 1 , 0 , 0...0 ], [ 0 , 1 , 1 ]] >>> coverage_error ( y_true , y_score ) np.float64(1.5)...scikit-learn.org/stable/modules/generated/sklearn.metrics.coverage_error.html -
make_friedman1 — scikit-learn 1.6.1 documentation
Annals of Statistics 19 (1), pages 1-67, 1991. [ 2 ] L. Breiman,...[source] # Generate the “Friedman #1” regression problem. This dataset...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_friedman1.html -
Illustration of Gaussian process classification...
kernels = [ 1.0 * RBF ( length_scale = 1.15 ), 1.0 * DotProduct...)[:, 1 ] Z = Z . reshape ( xx . shape ) plt . subplot ( 1 , 2...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html -
Gradient Boosting regression — scikit-learn 1.6...
subplot ( 1 , 1 , 1 ) plt . title ( "Deviance"...12 , 6 )) plt . subplot ( 1 , 2 , 1 ) plt . barh ( pos , feature_importance...scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html -
dcg_score — scikit-learn 1.6.1 documentation
asarray ([[ 1 , 0 , 0 , 0 , 1 ]]) >>> # by default ties...to have a score between 0 and 1. References Wikipedia entry for...scikit-learn.org/stable/modules/generated/sklearn.metrics.dcg_score.html -
power_transform — scikit-learn 1.6.1 documentation
[[-1.332... -0.707...] [ 0.256... -0.707...] [ 1.076... 1.414...]]...Available methods are: ‘yeo-johnson’ [1] , works with positive and negative...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.power_transform.html -
inplace_csr_row_normalize_l1 — scikit-learn 1.6...
1 , 2 , 3 ]) >>> data = np . array ([ 1.0 , 2.0 , 3.0...0. ], [0. , 0. , 1. , 0. ], [0. , 0. , 0. , 1. ]]) On this page...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs_fast.inplace_csr_row_normaliz... -
Importance of Feature Scaling — scikit-learn 1....
0 and 1,000; whereas the variable “hue” varies between 1 and 10....it has a standard deviation of 1 and a mean of 0. Even if tree...scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html -
Faces dataset decompositions — scikit-learn 1.6...
mean ( axis = 1 ) . reshape ( n_samples , - 1 ) print ( "Dataset...n_components = n_components , alpha = 0.1 , max_iter = 100 , batch_size...scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html