- Sort Score
- Num 10 results
- Language All
- Labels All
Results 71 - 80 of over 10,000 for 1 (0.09 seconds)
-
sparse_encode — scikit-learn 1.8.0 docume...
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.decomposition.sparse_encode.html -
completeness_score — scikit-learn 1.8.0 d...
1 , 1 ], [ 1 , 1 , 0 , 0 ]) 1.0 Non-perfect labelings...completeness_score ([ 0 , 0 , 1 , 1 ], [ 0 , 1 , 0 , 1 ])) 0.0 >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.completeness_score.html -
compute_optics_graph — scikit-learn 1.8.0...
1.41, 1.41, 1. , 1. , 4.12]) >>>...min_samples int > 1 or float between 0 and 1 The number of samples...scikit-learn.org/stable/modules/generated/sklearn.cluster.compute_optics_graph.html -
cluster_optics_xi — scikit-learn 1.8.0 do...
1, 1, 1]) >>> clusters array([[0,...min_samples int > 1 or float between 0 and 1 The same as the min_samples...scikit-learn.org/stable/modules/generated/sklearn.cluster.cluster_optics_xi.html -
SparseCoder — scikit-learn 1.8.0 document...
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparseCoder.html -
VotingClassifier — scikit-learn 1.8.0 doc...
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...2 , 1 ], [ 3 , 2 ]]) >>> y = np . array ([ 1 , 1 , 1...scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html -
PredefinedSplit — scikit-learn 1.8.0 docu...
1 , 1 ]) >>> test_fold = [ 0 , 1 , - 1 , 1 ] >>>...PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for i , (...scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html -
f1_score — scikit-learn 1.8.0 documentation
[ 1 , 1 , 1 ], [ 0 , 1 , 1 ]] >>> y_pred...= [[ 0 , 0 , 0 ], [ 1 , 1 , 1 ], [ 1 , 1 , 0 ]] >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html -
type_of_target — scikit-learn 1.8.0 docum...
>>> type_of_target ([ 1 , - 1 , - 1 , 1 ]) 'binary' >>>...type_of_target ( np . array ([[ 0 , 1 ], [ 1 , 1 ]])) 'multilabel-indicator'...scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html -
KNeighborsRegressor — scikit-learn 1.8.0 ...
() array([[1., 0., 1.], [0., 1., 1.], [1., 0., 1.]]) predict...], [ 1 ], [ 2 ], [ 3 ]] >>> y = [ 0 , 0 , 1 , 1 ] >>>...scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html