- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 741 - 750 of 2,911 for 1 (0.1 sec)
-
RegressorChain — scikit-learn 1.7.0 documentation
= [[ 1 , 0 ], [ 0 , 1 ], [ 1 , 1 ]], [[ 0 , 2 ], [ 1 , 1 ], [...order = [ 0 , 1 , 2 , ... , Y . shape [ 1 ] - 1 ] The order of...scikit-learn.org/stable/modules/generated/sklearn.multioutput.RegressorChain.html -
StratifiedGroupKFold — scikit-learn 1.7.0 docum...
1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0...Train: index=[ 0 1 2 3 7 8 9 10 11 15 16] group=[1 1 2 2 4 5 5 5 5...scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html -
make_spd_matrix — scikit-learn 1.7.0 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version make_spd_matrix # sklearn.datasets. make_spd_matrix (...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html -
get_scorer_names — scikit-learn 1.7.0 documenta...
Skip to main content Back to top Ctrl + K GitHub Choose version get_scorer_names # sklearn.metrics. get_scorer_names ...scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer_names.html -
Non-negative least squares — scikit-learn 1.7.0...
In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html -
sklearn.linear_model — scikit-learn 1.7.0 docum...
A variety of linear models. User guide. See the Linear Models section for further details. The following subsections are only rough guidelines: the same estimator can fall into multiple categories,...scikit-learn.org/stable/api/sklearn.linear_model.html -
sklearn.cross_decomposition — scikit-learn 1.7....
Algorithms for cross decomposition. User guide. See the Cross decomposition section for further details.scikit-learn.org/stable/api/sklearn.cross_decomposition.html -
sklearn.semi_supervised — scikit-learn 1.7.0 do...
Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. User guide. See the Semi-supervised learnin...scikit-learn.org/stable/api/sklearn.semi_supervised.html -
sklearn.discriminant_analysis — scikit-learn 1....
Linear and quadratic discriminant analysis. User guide. See the Linear and Quadratic Discriminant Analysis section for further details.scikit-learn.org/stable/api/sklearn.discriminant_analysis.html -
clear_data_home — scikit-learn 1.7.0 documentation
Skip to main content Back to top Ctrl + K GitHub Choose version clear_data_home # sklearn.datasets. clear_data_home (...scikit-learn.org/stable/modules/generated/sklearn.datasets.clear_data_home.html