Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 741 - 750 of 2,911 for 1 (0.1 sec)

  1. RegressorChain — scikit-learn 1.7.0 documentation

    = [[ 1 , 0 ], [ 0 , 1 ], [ 1 , 1 ]], [[ 0 , 2 ], [ 1 , 1 ], [...order = [ 0 , 1 , 2 , ... , Y . shape [ 1 ] - 1 ] The order of...
    scikit-learn.org/stable/modules/generated/sklearn.multioutput.RegressorChain.html
    Fri Jun 06 09:13:47 UTC 2025
      133.9K bytes
      Cache
     
  2. StratifiedGroupKFold — scikit-learn 1.7.0 docum...

    1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0...Train: index=[ 0 1 2 3 7 8 9 10 11 15 16] group=[1 1 2 2 4 5 5 5 5...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html
    Fri Jun 06 09:13:47 UTC 2025
      129.9K bytes
      Cache
     
  3. make_spd_matrix — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version make_spd_matrix # sklearn.datasets. make_spd_matrix (...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_spd_matrix.html
    Fri Jun 06 09:13:47 UTC 2025
      106.6K bytes
      Cache
     
  4. get_scorer_names — scikit-learn 1.7.0 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version get_scorer_names # sklearn.metrics. get_scorer_names ...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.get_scorer_names.html
    Fri Jun 06 09:13:47 UTC 2025
      105.5K bytes
      Cache
     
  5. Non-negative least squares — scikit-learn 1.7.0...

    In this example, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. Generate some random data Spli...
    scikit-learn.org/stable/auto_examples/linear_model/plot_nnls.html
    Fri Jun 06 09:13:47 UTC 2025
      93.4K bytes
      Cache
     
  6. sklearn.linear_model — scikit-learn 1.7.0 docum...

    A variety of linear models. User guide. See the Linear Models section for further details. The following subsections are only rough guidelines: the same estimator can fall into multiple categories,...
    scikit-learn.org/stable/api/sklearn.linear_model.html
    Fri Jun 06 09:13:47 UTC 2025
      135.4K bytes
      Cache
     
  7. sklearn.cross_decomposition — scikit-learn 1.7....

    Algorithms for cross decomposition. User guide. See the Cross decomposition section for further details.
    scikit-learn.org/stable/api/sklearn.cross_decomposition.html
    Fri Jun 06 09:13:47 UTC 2025
      115.3K bytes
      Cache
     
  8. sklearn.semi_supervised — scikit-learn 1.7.0 do...

    Semi-supervised learning algorithms. These algorithms utilize small amounts of labeled data and large amounts of unlabeled data for classification tasks. User guide. See the Semi-supervised learnin...
    scikit-learn.org/stable/api/sklearn.semi_supervised.html
    Fri Jun 06 09:13:46 UTC 2025
      115.3K bytes
      Cache
     
  9. sklearn.discriminant_analysis — scikit-learn 1....

    Linear and quadratic discriminant analysis. User guide. See the Linear and Quadratic Discriminant Analysis section for further details.
    scikit-learn.org/stable/api/sklearn.discriminant_analysis.html
    Fri Jun 06 09:13:47 UTC 2025
      114.8K bytes
      Cache
     
  10. clear_data_home — scikit-learn 1.7.0 documentation

    Skip to main content Back to top Ctrl + K GitHub Choose version clear_data_home # sklearn.datasets. clear_data_home (...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.clear_data_home.html
    Fri Jun 06 09:13:47 UTC 2025
      105.1K bytes
      Cache
     
Back to top