Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 711 - 720 of 2,956 for 1 (0.63 sec)

  1. sklearn.base — scikit-learn 1.6.1 documentation

    Base classes for all estimators and various utility functions.
    scikit-learn.org/stable/api/sklearn.base.html
    Mon Apr 21 17:07:38 UTC 2025
      120K bytes
      Cache
     
  2. sklearn.isotonic — scikit-learn 1.6.1 documenta...

    Isotonic regression for obtaining monotonic fit to data. User guide. See the Isotonic regression section for further details.
    scikit-learn.org/stable/api/sklearn.isotonic.html
    Mon Apr 21 17:07:39 UTC 2025
      115.5K bytes
      Cache
     
  3. distance_metrics — scikit-learn 1.6.1 documenta...

    Skip to main content Back to top Ctrl + K GitHub Choose version distance_metrics # sklearn.metrics.pairwise. distance...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.distance_metrics.html
    Mon Apr 21 17:07:39 UTC 2025
      106.2K bytes
      Cache
     
  4. sklearn.compose — scikit-learn 1.6.1 documentation

    Meta-estimators for building composite models with transformers. In addition to its current contents, this module will eventually be home to refurbished versions of Pipeline and FeatureUnion. User ...
    scikit-learn.org/stable/api/sklearn.compose.html
    Mon Apr 21 17:07:39 UTC 2025
      117K bytes
      Cache
     
  5. sklearn.impute — scikit-learn 1.6.1 documentation

    Transformers for missing value imputation. User guide. See the Imputation of missing values section for further details.
    scikit-learn.org/stable/api/sklearn.impute.html
    Mon Apr 21 17:07:39 UTC 2025
      115.8K bytes
      Cache
     
  6. Working with text documents — scikit-learn 1.6....

    Examples concerning the sklearn.feature_extraction.text module. Classification of text documents using sparse features Clustering text documents using k-means FeatureHasher and DictVectorizer Compa...
    scikit-learn.org/stable/auto_examples/text/index.html
    Mon Apr 21 17:07:39 UTC 2025
      75.4K bytes
      5 views
      Cache
     
  7. ParameterGrid — scikit-learn 1.6.1 documentation

    [{ 'a' : 1 , 'b' : True }, { 'a' : 1 , 'b' : False },...( grid )[ 1 ] == { 'kernel' : 'rbf' , 'gamma' : 1 } True On this...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterGrid.html
    Mon Apr 21 17:07:39 UTC 2025
      110.7K bytes
      Cache
     
  8. CategoricalNB — scikit-learn 1.6.1 documentation

    Added in version 1.2. Changed in version 1.4: The default value... CategoricalNB ( * , alpha = 1.0 , force_alpha = True , fit_prior...
    scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html
    Mon Apr 21 17:07:39 UTC 2025
      152.8K bytes
      Cache
     
  9. OneToOneFeatureMixin — scikit-learn 1.6.1 docum...

    This mixin assumes there’s a 1-to-1 correspondence between input...shape [ 1 ] ... return self >>> X = np . array ([[ 1 , 2 ], [...
    scikit-learn.org/stable/modules/generated/sklearn.base.OneToOneFeatureMixin.html
    Mon Apr 21 17:07:39 UTC 2025
      110K bytes
      Cache
     
  10. ParameterSampler — scikit-learn 1.6.1 documenta...

    'a' : 1 }, ... { 'b' : 0.923223 , 'a' : 1 }, ... { 'b' : 1.878964...0 ) >>> param_grid = { 'a' :[ 1 , 2 ], 'b' : expon ()} >>> param_list...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterSampler.html
    Mon Apr 21 17:07:39 UTC 2025
      111.1K bytes
      Cache
     
Back to top