- Sort Score
- Num 10 results
- Language All
- Labels All
Results 691 - 700 of over 10,000 for 2 (1.13 seconds)
-
SGD: convex loss functions — scikit-learn...
= ( 1 - z [ z >= - 1 ]) ** 2 loss [ z >= 1.0 ] = 0 return...linspace ( xmin , xmax , 100 ) lw = 2 plt . plot ([ xmin , 0 , 0 , xmax...scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html -
make_circles — scikit-learn 1.8.0 documen...
n_samples int or tuple of shape (2,), dtype=int, default=100 If int,...ndarray of shape (n_samples, 2) The generated samples. y ndarray...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_circles.html -
multilabel_confusion_matrix — scikit-lear...
2]], [[5, 0], [1, 0]], [[2, 1], [1, 2]]]) On this...ndarray of shape (n_outputs, 2, 2) A 2x2 confusion matrix corresponding...scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html -
grid_to_graph — scikit-learn 1.8.0 docume...
'int64' with 2 stored elements and shape (2, 2)> Coords Values...>>> mask [[ 1 , 2 ], [ 1 , 2 ], :] = True >>>...scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.image.grid_to_graph.html -
AdditiveChi2Sampler — scikit-learn 1.8.0 ...
sample_steps = 2 , sample_interval = None ) [source]...original space is transformed into 2*sample_steps-1 features, where...scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html -
Lars — scikit-learn 1.8.0 documentation
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...n_nonzero_coefs = 500 , eps = np.float64(2.220446049250313e-16) , copy_X...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html -
PolynomialFeatures — scikit-learn 1.8.0 d...
degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Read...etc. excluded: x[0] ** 2 , x[0] ** 2 * x[1] , etc. include_bias...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html -
mean_absolute_error — scikit-learn 1.8.0 ...
2 , 7 ] >>> y_pred = [ 2.5 , 0.0 , 2 , 8 ] >>>...>>> y_pred = [[ 0 , 2 ], [ - 1 , 2 ], [ 8 , - 5 ]] >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html -
mean_squared_error — scikit-learn 1.8.0 d...
2 , 7 ] >>> y_pred = [ 2.5 , 0.0 , 2 , 8 ] >>>...>>> y_pred = [[ 0 , 2 ],[ - 1 , 2 ],[ 8 , - 5 ]] >>>...scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html -
weighted_mode — scikit-learn 1.8.0 docume...
2 , 4 , 2 ] >>> weights = [...weights ) (array([2.]), array([3.5])) The value 2 has the highest...scikit-learn.org/stable/modules/generated/sklearn.utils.extmath.weighted_mode.html