Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 671 - 680 of 2,934 for 1 (0.09 sec)

  1. apache-maven-fluido-1.3.0.min.css

    1);-moz-box-shadow:0 1px 3px rgba(0,0,0,0.1);box-shadow:0...r-color:rgba(0,0,0,0.1) rgba(0,0,0,0.1) rgba(0,0,0,0.25);border-color:#e6e6e6...
    dbflute.seasar.org/maven/plugin/ja/css/apache-maven-fluido-1.3.0.min.css
    Mon Sep 15 10:51:18 UTC 2025
      96.5K bytes
      Similar Results (1)
     
  2. Segmenting the picture of greek coins in region...

    1.73s Spectral clustering: discretize, 1.60s Spectral...the # actual image. For beta=1, the segmentation is close to...
    scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html
    Mon Nov 03 14:20:04 UTC 2025
      95.4K bytes
      Cache
     
  3. load_digits — scikit-learn 1.7.2 documentation

    scikit-learn 1.3 Release Highlights for scikit-learn 1.3 Label Propagation...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
    Mon Nov 03 14:20:04 UTC 2025
      128.2K bytes
      Cache
     
  4. Demo of OPTICS clustering algorithm — scikit-le...

    subplot ( G [ 1 , 0 ]) ax3 = plt . subplot ( G [ 1 , 1 ]) ax4 = plt...labels_ == - 1 , 0 ], X [ clust . labels_ == - 1 , 1 ], "k+" , alpha...
    scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
    Mon Nov 03 14:20:03 UTC 2025
      107.4K bytes
      1 views
      Cache
     
  5. Tweedie regression on insurance claims — scikit...

    tweedie_powers = [ 1.5 , 1.7 , 1.8 , 1.9 , 1.99 , 1.999 , 1.9999 ] scores_product_model...dev p=1.9990 1.914574e+03 1.914370e+03 1.914537e+03 1.914388e+03...
    scikit-learn.org/stable/auto_examples/linear_model/plot_tweedie_regression_insurance_claims.html
    Mon Nov 03 14:20:05 UTC 2025
      181.8K bytes
      Cache
     
  6. 2. Unsupervised learning — scikit-learn 1.7.2 d...

    1. Gaussian mixture models 2.1.1. Gaussian Mixture 2.1.2....Mixture 2.2. Manifold learning 2.2.1. Introduction 2.2.2. Isomap 2.2.3....
    scikit-learn.org/stable/unsupervised_learning.html
    Mon Nov 03 14:20:04 UTC 2025
      37.9K bytes
      Cache
     
  7. Demonstrating the different strategies of KBins...

    ]]) centers_1 = np . array ([[ 0 , 0 ], [ 3 , 1 ]]) # construct...strategies ) + 1 , i ) ax . scatter ( X [:, 0 ], X [:, 1 ], edgecolors...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_strategies.html
    Mon Nov 03 14:20:04 UTC 2025
      100.7K bytes
      Cache
     
  8. ClassNamePrefixFeaturesOutMixin — scikit-learn ...

    shape [ 1 ] ... return self >>> X = np . array ([[ 1 , 2 ], [...
    scikit-learn.org/stable/modules/generated/sklearn.base.ClassNamePrefixFeaturesOutMixin.html
    Mon Nov 03 14:20:03 UTC 2025
      110K bytes
      Cache
     
  9. Visualizing the stock market structure — scikit...

    index ] = 1 dy = y - embedding [ 1 ] dy [ index ] = 1 this_dx =...alphas = np . logspace ( - 1.5 , 1 , num = 10 ) edge_model = covariance...
    scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html
    Mon Nov 03 14:20:05 UTC 2025
      145.3K bytes
      Cache
     
  10. Agglomerative clustering with and without struc...

    ) t = 1.5 * np . pi * ( 1 + 3 * np . random . rand ( 1 , n_samples..."single" )): plt . subplot ( 1 , 4 , index + 1 ) model = AgglomerativeCluster...
    scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html
    Mon Nov 03 14:20:04 UTC 2025
      97.4K bytes
      Cache
     
Back to top