- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 651 - 660 of 4,571 for * (3.23 sec)
-
FeatureUnion — scikit-learn 1.7.2 documentation
FeatureUnion ([( "pca" , PCA ( n_components = 1 )), ... ( "svd" , TruncatedSVD...3.04, -0.872], [ 1.5 , 5.72, 0.463]]) >>> # An estimator's parameter...scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html -
parametrize_with_checks — scikit-learn 1.7.2 do...
ks ([ LogisticRegression (), ... DecisionTreeRegresso ()]) ......with scikit-learn. Refer to https://scikit-learn.org/dev/developers/develop.html...scikit-learn.org/stable/modules/generated/sklearn.utils.estimator_checks.parametrize_with_checks.... -
mean_poisson_deviance — scikit-learn 1.7.2 docu...
= [ 2 , 0 , 1 , 4 ] >>> y_pred = [ 0.5 , 0.5 , 2. , 2. ] >>>...mean_poisson_deviance ( y_true , y_pred ) 1.4260... Gallery examples # Poisson...scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_poisson_deviance.html -
classification_report — scikit-learn 1.7.2 docu...
{ 'precision' : 0.5 , 'recall' : 1.0 , 'f1-score' : 0.67 , 'support'...recall f1-score support class 0 0.50 1.00 0.67 1 class 1 0.00 0.00...scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html -
mean_tweedie_deviance — scikit-learn 1.7.2 docu...
= [ 2 , 0 , 1 , 4 ] >>> y_pred = [ 0.5 , 0.5 , 2. , 2. ] >>>...mean_tweedie_deviance ( y_true , y_pred , power = 1 ) 1.4260... Gallery examples...scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_tweedie_deviance.html -
model_evaluation.rst.txt
evaluation (`mean_pinball_loss(..., alpha=0.99)` - we apologize...Association 102 (2007), pp. 359– 378. `link to pdf <https://sites.sta...scikit-learn.org/stable/_sources/modules/model_evaluation.rst.txt -
RFE — scikit-learn 1.7.2 documentation
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5]) decision_function ( X ) [source]...vector machines”, Mach. Learn., 46(1-3), 389–422, 2002. Examples The...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html -
plot_hgbt_regression.ipynb
[], "source": [ "df[\"transfer\"][:17_760].unique()" ] }, { "cell_type":...{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source":...scikit-learn.org/stable/_downloads/cb9a8a373677fb481fe43a11d8fa0e94/plot_hgbt_regression.ipynb -
feature_selection.rst.txt
= [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0,....8))) >>> sel.fit_transform(X) array([[0, 1], [1, 0], [0, 0], [1,...scikit-learn.org/stable/_sources/modules/feature_selection.rst.txt -
fetch_olivetti_faces — scikit-learn 1.7.2 docum...
encountered. Added in version 1.5. delay float, default=1.0 Number...return_X_y = False , n_retries = 3 , delay = 1.0 ) [source] # Load the...scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html