- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 501 - 510 of 2,023 for = (0.16 sec)
-
SelectPercentile — scikit-learn 1.7.1 documenta...
score_func=<function f_classif> , * , percentile=10 ) [source]..., chi2 >>> X , y = load_digits ( return_X_y = True ) >>> X . shape...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html -
SelectFdr — scikit-learn 1.7.1 documentation
SelectFdr ( score_func=<function f_classif> , * , alpha=0.05 ) [source]...chi2 >>> X , y = load_breast_cancer ( return_X_y = True ) >>> X...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFdr.html -
SelectFwe — scikit-learn 1.7.1 documentation
SelectFwe ( score_func=<function f_classif> , * , alpha=0.05 ) [source]...chi2 >>> X , y = load_breast_cancer ( return_X_y = True ) >>> X...scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFwe.html -
Product — scikit-learn 1.7.1 documentation
y = make_friedman2 ( n_samples = 500 , noise = 0 , random_state...RBF(length_scale=1) __call__ ( X , Y = None , eval_gradient = False )...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Product.html -
trustworthiness — scikit-learn 1.7.1 documentation
_ = make_blobs ( n_samples = 100 , n_features = 10 , centers...centers = 3 , random_state = 42 ) >>> X_embedded = PCA ( n_components...scikit-learn.org/stable/modules/generated/sklearn.manifold.trustworthiness.html -
multilabel_confusion_matrix — scikit-learn 1.7....
sample_weight = None , labels = None , samplewise = False ) [source]...multi_confusion (samplewise=True), n_outputs = n_samples. If labels...scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html -
fetch_california_housing — scikit-learn 1.7.1 d...
data_home = None , download_if_missing = True , return_X_y = False...False , as_frame = False , n_retries = 3 , delay = 1.0 ) [source]...scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html -
ledoit_wolf — scikit-learn 1.7.1 documentation
>>> X = rng . multivariate_normal ( mean = [ 0 , 0 ], cov = real_cov...* , assume_centered = False , block_size = 1000 ) [source] # Estimate...scikit-learn.org/stable/modules/generated/sklearn.covariance.ledoit_wolf.html -
152x152.png
35273367 width=152, height=152, bitDepth=8, colorType=RGBAlpha, ...compressionMethod=deflate, filterMethod=adaptive, interlaceMethod=none RGB...www.digg.com/favicon/152x152.png -
apple-icon-152x152.png
35285816 width=152, height=152, bitDepth=8, colorType=RGBAlpha, ...compressionMethod=deflate, filterMethod=adaptive, interlaceMethod=none RGB...www.elastic.co/apple-icon-152x152.png