- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 441 - 450 of 2,485 for 2 (0.07 sec)
-
StratifiedKFold — scikit-learn 1.7.2 documentation
2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ]]) >>>...n_splits = 2 ) >>> skf . get_n_splits ( X , y ) 2 >>> print (...scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html -
Classifier comparison — scikit-learn 1.7.2 docu...
n_features = 2 , n_redundant = 0 , n_informative = 2 , random_state.... random . RandomState ( 2 ) X += 2 * rng . uniform ( size =...scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html -
ledoit_wolf — scikit-learn 1.7.2 documentation
scikit-learn.org/stable/modules/generated/sklearn.covariance.ledoit_wolf.html -
XML results output
2 11.1 11.0 10.3 10.2 10.1 10.0 9.4 9.3 9.2 9.1 9.0 8.0...13.4 13.3 13.2 13.1 13.0 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0...fess.codelibs.org/4.0/user/xml-response.html -
OneVsRestClassifier — scikit-learn 1.7.2 docume...
2 , 2 ]) >>> clf = OneVsRestClassifier...9 , 9 ], [ - 5 , 5 ]]) array([2, 0, 1]) decision_function ( X...scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html -
Feature discretization — scikit-learn 1.7.2 doc...
n_features = 2 , n_redundant = 0 , n_informative = 2 , random_state...GradientBoostingClas: 0.84 SVC: 0.84 dataset 2 --------- LogisticRegression:...scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization_classification.html -
Kernel PCA — scikit-learn 1.7.2 documentation
subplots ( ncols = 2 , sharex = True , sharey = True...KernelPCA pca = PCA ( n_components = 2 ) kernel_pca = KernelPCA ( n_components...scikit-learn.org/stable/auto_examples/decomposition/plot_kernel_pca.html -
HuberRegressor — scikit-learn 1.7.2 documentation
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...penalty is equal to alpha * ||w||^2 . Must be in the range [0, inf)...scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html -
Incremental PCA — scikit-learn 1.7.2 documentation
target n_components = 2 ipca = IncrementalPCA ( n_components...target_name in zip ( colors , [ 0 , 1 , 2 ], iris . target_names ): plt...scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html -
アップグレード手順
2/fess-15.3.2.tar.gz $ tar -xzf fess-15.3.2.tar.gz 古いバージョンの設定をコピー:...-Uvh fess-15.3.2.rpm # DEB $ sudo dpkg -i fess-15.3.2.deb 注釈 設定ファイル(...fess.codelibs.org/ja/15.3/install/upgrade.html