- Sort Score
- Num 10 results
- Language All
- Labels All
Results 431 - 440 of over 10,000 for 1 (0.47 seconds)
-
LassoLarsIC — scikit-learn 1.8.0 document...
[ - 1 , 1 ], [ 0 , 0 ], [ 1 , 1 ], [ 2 , 2 ]] >>>...fit_intercept . Added in version 1.1. Attributes : coef_ array-like...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html -
permutation_test_score — scikit-learn 1.8...
p-value is 1/(n_permutations + 1), the worst is 1.0. Notes This...means 1 unless in a joblib.parallel_backend context. -1 means...scikit-learn.org/stable/modules/generated/sklearn.model_selection.permutation_test_score.html -
FeatureHasher and DictVectorizer Comparison ...
'example': 1, 'but': 1, 'this': 1, 'another':...tokenize ( doc ): freq [ tok ] += 1 return freq token_freqs ( "That...scikit-learn.org/stable/auto_examples/text/plot_hashing_vs_dict_vectorizer.html -
zero_one_loss — scikit-learn 1.8.0 docume...
1 ], [ 1 , 1 ]]), np . ones (( 2 , 2...zero_one_loss >>> y_pred = [ 1 , 2 , 3 , 4 ] >>> y_true...scikit-learn.org/stable/modules/generated/sklearn.metrics.zero_one_loss.html -
Understanding the decision tree structure ̵...
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead...[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead...scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html -
Nearest Neighbors Classification — scikit...
feature_names [ 1 ], shading = "auto".... iloc [:, 0 ], X . iloc [:, 1 ], c = y , edgecolors = "k"...scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html -
Lars — scikit-learn 1.8.0 documentation
[ 1 , 1 ]], [ - 1.1111 , 0 , - 1.1111 ]) Lars(n_nonzero_coefs=1)...n_nonzero_coefs = 1 ) >>> reg . fit ([[ - 1 , 1 ], [ 0 , 0...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html -
LassoLars — scikit-learn 1.8.0 documentation
([[ - 1 , 1 ], [ 0 , 0 ], [ 1 , 1 ]], [ - 1 , 0 , - 1 ]) LassoLars(alpha=0.01)...sklearn.linear_model. LassoLars ( alpha = 1.0 , * , fit_intercept = True ,...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html -
MinMaxScaler — scikit-learn 1.8.0 documen...
data = [[ - 1 , 2 ], [ - 0.5 , 6 ], [ 0 , 10 ], [ 1 , 18 ]] >>>...0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print ( scaler...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html -
IsotonicRegression — scikit-learn 1.8.0 d...
1 , .2 ]) array([1.8628, 3.7256]) fit (...n_samples = 10 , n_features = 1 , random_state = 41 ) >>>...scikit-learn.org/stable/modules/generated/sklearn.isotonic.IsotonicRegression.html