- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 4191 - 4200 of 4,807 for * (2.46 sec)
-
scikit-learn: machine learning in Python — scik...
download ( Changelog ). June 2025. scikit-learn 1.7.0 is available...download ( Changelog ). January 2025. scikit-learn 1.6.1 is available...scikit-learn.org/stable/index.html -
Illustration of Gaussian process classification...
. Paired , edgecolors = ( 0 , 0 , 0 )) plt . xticks (()) plt...= ( 10 , 5 )) kernels = [ 1.0 * RBF ( length_scale = 1.15 ), 1.0...scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html -
Visualizations with Display Objects — scikit-le...
steps [('standardscaler', ...), ('logisticregression', ...)] transform_input...plt . subplots ( 1 , 2 , figsize = ( 12 , 8 )) roc_display . plot...scikit-learn.org/stable/auto_examples/miscellaneous/plot_display_object_visualization.html -
Various Agglomerative Clustering on a 2D embedd...
03 , 1 , 0.95 ]) # ---------- # 2D embedding of the digits dataset...shape np . random . seed ( 0 ) # ---------- # Visualize the clustering...scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html -
Plot Hierarchical Clustering Dendrogram — sciki...
dendrogram ( linkage_matrix , ** kwargs ) iris = load_iris () X = iris...plot_dendrogram ( model , truncate_mode = "level" , p = 3 ) plt . xlabel...scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html -
Image denoising using dictionary learning — sci...
, size = 16 ) plt . subplots_adjust ( 0.02 , 0.02 , 0.98 , 0.79...= "nearest" ) plt . xticks (()) plt . yticks (()) plt . subplot...scikit-learn.org/stable/auto_examples/decomposition/plot_image_denoising.html -
Post pruning decision trees with cost complexit...
alpha for training set" ) Text(0.5, 1.0, 'Total Impurity vs effective...= "steps-post" ) ax . set_xlabel ( "effective alpha" ) ax . set_ylabel...scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html -
Comparison of F-test and mutual information — s...
follows: y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the...* np . pi * X [:, 1 ]) + 0.1 * np . random . randn ( 1000 ) f_test...scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html -
Plot classification boundaries with different S...
0.4 ], [ - 0.5 , 1.2 ], [ - 1.5 , 2.1 ], [ 1.0 , 1.0 ], [ 1.3...array ([ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 ,...scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html -
RBF SVM parameters — scikit-learn 1.7.1 documen...
parameters are {'C': np.float64(1.0), 'gamma': np.float64(0.1)} with a...self . midpoint , self . vmax ], [ 0 , 0.5 , 1 ] return np . ma...scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html