- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 401 - 410 of 3,264 for 2 (0.28 sec)
-
1.8. Cross decomposition — scikit-learn 1.7.2 d...
2. PLSSVD # PLSSVD is a simplified...with algorithm='nipals' , with 2 significant differences: at step...scikit-learn.org/stable/modules/cross_decomposition.html -
AdditiveChi2Sampler — scikit-learn 1.7.2 docume...
sample_steps = 2 , sample_interval = None ) [source]...original space is transformed into 2*sample_steps-1 features, where...scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html -
resample — scikit-learn 1.7.2 documentation
2)> >>> X_sparse . toarray () array([[1., 0.], [2., 1.],...= np . array ([[ 1. , 0. ], [ 2. , 1. ], [ 0. , 0. ]]) >>> y =...scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html -
make_low_rank_matrix — scikit-learn 1.7.2 docum...
scikit-learn.org/stable/modules/generated/sklearn.datasets.make_low_rank_matrix.html -
PredefinedSplit — scikit-learn 1.7.2 documentation
2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ]]) >>>...index=[1 2 3] Test: index=[0] Fold 1: Train: index=[0 2] Test:...scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html -
LarsCV — scikit-learn 1.7.2 documentation
float \(R^2\) of self.predict(X) w.r.t. y . Notes The \(R^2\) score...n_jobs = None , eps = np.float64(2.220446049250313e-16) , copy_X...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LarsCV.html -
TfidfTransformer — scikit-learn 1.7.2 documenta...
scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html -
indexable — scikit-learn 1.7.2 documentation
2 , 3 ], np . array ([ 2 , 3 , 4 ]), None ,...indexable ( * iterables ) [[1, 2, 3], array([2, 3, 4]), None, <...Sparse...dtype...scikit-learn.org/stable/modules/generated/sklearn.utils.indexable.html -
Version 0.19 — scikit-learn 1.7.2 documentation
2 # July, 2018 This release is exclusively...leaf if its weight is less than 2 * the minimum. Note that the constructed...scikit-learn.org/stable/whats_new/v0.19.html -
normalize — scikit-learn 1.7.2 documentation
import normalize >>> X = [[ - 2 , 1 , 2 ], [ - 1 , 0 , 1 ]] >>> normalize...independently array([[-0.4, 0.2, 0.4], [-0.5, 0. , 0.5]]) >>>...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html