- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 391 - 400 of 3,451 for 1 (0.09 sec)
-
Detection error tradeoff (DET) curve — scikit-l...
random_state = 1 , n_clusters_per_class = 1 , ) X_train , X_test...make_classification ( n_samples = 1_000 , n_features = 2 , n_redundant...scikit-learn.org/stable/auto_examples/model_selection/plot_det.html -
TimeSeriesSplit — scikit-learn 1.5.2 documentation
array ([[ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [ 3 , 4 ], [ 1 , 2 ], [...index=[0] Test: index=[1] Fold 1: Train: index=[0 1] Test: index=[2]...scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html -
LocalOutlierFactor — scikit-learn 1.5.2 documen...
() array([[1., 0., 1.], [0., 1., 1.], [1., 0., 1.]]) predict...fit_predict ( X ) array([ 1, 1, -1, 1]) >>> clf . negative_outlier_factor_...scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html -
inplace_csr_column_scale — scikit-learn 1.5.2 d...
1 , 2 , 2 ]) >>> data = np . array ([ 8 , 1 , 2 , 5 ])...csr . todense () matrix([[8, 1, 2], [0, 0, 5], [0, 0, 0], [0,...scikit-learn.org/stable/modules/generated/sklearn.utils.sparsefuncs.inplace_csr_column_scale.html -
ShuffleSplit — scikit-learn 1.5.2 documentation
array ([ 1 , 2 , 1 , 2 , 1 , 2 ]) >>> rs = ShuffleSplit...Train: index=[1 3 0 4] Test: index=[5 2] Fold 1: Train: index=[4...scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html -
Comparing Nearest Neighbors with and without Ne...
StandardScaler n_neighbors = 1 dataset = datasets . load_iris.... scatter ( X [:, 0 ], X [:, 1 ], c = y , cmap = cmap_bold ,...scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html -
homogeneity_score — scikit-learn 1.5.2 document...
1 , 1 ], [ 1 , 1 , 0 , 0 ]) np.float64(1.0) Non-perfect...homogeneity_score ([ 0 , 0 , 1 , 1 ], [ 0 , 0 , 1 , 2 ])) 1.000000 >>> print...scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_score.html -
make_sparse_spd_matrix — scikit-learn 1.5.2 doc...
array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0.,...elements all 1. smallest_coef float, default=0.1 The value of...scikit-learn.org/stable/modules/generated/sklearn.datasets.make_sparse_spd_matrix.html -
SparseCoder — scikit-learn 1.5.2 documentation
1 , 0 ], ... [ - 1 , - 1 , 2 ], ... [ 1 , 1 , 1 ], ......>>> X = np . array ([[ - 1 , - 1 , - 1 ], [ 0 , 0 , 3 ]]) >>> dictionary...scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparseCoder.html -
VotingClassifier — scikit-learn 1.5.2 documenta...
([[ - 1 , - 1 ], [ - 2 , - 1 ], [ - 3 , - 2 ], [ 1 , 1 ], [ 2...2 , 1 ], [ 3 , 2 ]]) >>> y = np . array ([ 1 , 1 , 1 , 2 , 2...scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html