Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 21 - 30 of 113 for pipe (0.23 sec)

  1. Comparing Target Encoder with Other Encoders — ...

    pipe ): result = cross_validate ( pipe , X , y , scoring...categorical_features ), ] ) pipe = make_pipeline ( preprocessor...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_target_encoder.html
    Wed Sep 17 19:57:59 UTC 2025
      156.8K bytes
      Cache
     
  2. Displaying Pipelines — scikit-learn 1.7.2 docum...

    ] pipe = Pipeline ( steps ) pipe # click on the...= "linear" ))] pipe = Pipeline ( steps ) pipe # click on the...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_pipeline_display.html
    Wed Sep 17 19:57:59 UTC 2025
      287.7K bytes
      Cache
     
  3. auto_examples_python.zip

    pipe.set_params(max_depth=3, max_iter=15) else: pipe.set_params(... step=1)), ] ) pipe.fit(X, y) ranking = pipe.named_steps["rf...
    scikit-learn.org/stable/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip
    Wed Sep 17 19:58:00 UTC 2025
      1.7M bytes
      7 views
     
  4. Recursive feature elimination — scikit-learn 1....

    ] ) pipe . fit ( X , y ) ranking = pipe . named_steps...), - 1 )) y = digits . target pipe = Pipeline ( [ ( "scaler" ,...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Wed Sep 17 19:57:59 UTC 2025
      91.4K bytes
      Cache
     
  5. preprocessing.rst.txt

    random_state=42) >>> pipe = make_pipeline(StandardScaler(),..., LogisticRegression()) >>> pipe.fit(X_train, y_train) # apply...
    scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt
    Tue Sep 16 14:38:52 UTC 2025
      52.9K bytes
     
  6. Using ES|QL COMPLETION + an LLM to write a Chuc...

    piped query. Here’s what comes back:...demonstrates the full power of ES|QL's piped structure. Each step flows naturally...
    www.elastic.co/search-labs/blog/esql-completion-command-llm-fact-generator
    Thu Sep 04 00:58:48 UTC 2025
      120.3K bytes
      Cache
     
  7. Categorical Feature Support in Gradient Boostin...

    for pipe in ( hist_dropped , hist_one_hot...hist_ordinal , hist_native ): if pipe is hist_native : # The native...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html
    Wed Sep 17 19:58:00 UTC 2025
      125.4K bytes
      Cache
     
  8. Getting Started — scikit-learn 1.7.2 documentation

    create a pipeline object >>> pipe = make_pipeline ( ... StandardScaler...# fit the whole pipeline >>> pipe . fit ( X_train , y_train )...
    scikit-learn.org/stable/getting_started.html
    Wed Sep 17 19:57:58 UTC 2025
      49.7K bytes
      Cache
     
  9. ES|QL | Elastic Docs

    Query Language (ES|QL) is a piped query language for filtering,...How does it work? ES|QL uses pipes ( | ) to manipulate and transform...
    www.elastic.co/docs/explore-analyze/query-filter/languages/esql
    Mon Aug 25 00:48:48 UTC 2025
      181.7K bytes
      Cache
     
  10. Log analytics | Elastic

    ES|QL 's piped syntax puts complex data wrangling...
    www.elastic.co/observability/log-monitoring
    Thu Sep 18 00:06:47 UTC 2025
      581.8K bytes
      Cache
     
Back to top