- Sort Score
- Result 10 results
- Languages All
- Labels All
Results 241 - 250 of 2,897 for 1 (0.24 sec)
-
RobustScaler — scikit-learn 1.7.2 documentation
[[ 1. , - 2. , 2. ], ... [ - 2. , 1. , 3. ], ... [ 4. , 1. ,..., -2. , 0. ], [-1. , 0. , 0.4], [ 1. , 0. , -1.6]]) fit ( X ,...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html -
Ridge — scikit-learn 1.7.2 documentation
Ridge ( alpha = 1.0 , * , fit_intercept = True ,...shape (n_targets,)}, default=1.0 Constant that multiplies the...scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html -
LassoLarsIC — scikit-learn 1.7.2 documentation
[ - 1 , 1 ], [ 0 , 0 ], [ 1 , 1 ], [ 2 , 2 ]] >>>...fit_intercept . Added in version 1.1. Attributes : coef_ array-like...scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsIC.html -
CalibrationDisplay — scikit-learn 1.7.2 documen...
pos_label is set to 1. Added in version 1.1. name str, default=None...estimators.classes_[1] when using from_estimator and set to 1 when using...scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibrationDisplay.html -
fetch_openml — scikit-learn 1.7.2 documentation
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Release Highlights...Added in version 1.2. Changed in version 1.4: The default value...scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_openml.html -
GradientBoostingClassifier — scikit-learn 1.7.2...
1 , n_estimators = 100 , subsample = 1.0 , criterion...in the range [1, inf) . subsample float, default=1.0 The fraction...scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html -
HistGradientBoostingRegressor — scikit-learn 1....
scikit-learn 1.1 Release Highlights for scikit-learn 1.1 Release Highlights...version 1.1: Added option ‘quantile’. Changed in version 1.3: Added...scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html -
Kernel — scikit-learn 1.7.2 documentation
length_scale = 1.0 ): ... self . length_scale =...2.0 ) >>> X = np . array ([[ 1 , 2 ], [ 3 , 4 ]]) >>> print (...scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Kernel.html -
MinMaxScaler — scikit-learn 1.7.2 documentation
data = [[ - 1 , 2 ], [ - 0.5 , 6 ], [ 0 , 10 ], [ 1 , 18 ]] >>>...0. ] [0.25 0.25] [0.5 0.5 ] [1. 1. ]] >>> print ( scaler . transform...scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html -
silhouette_samples — scikit-learn 1.7.2 documen...
The best value is 1 and the worst value is -1. Values near 0 indicate...2 <= n_labels <= n_samples - 1 . This function returns the Silhouette...scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_samples.html