Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 231 - 240 of 1,990 for = (0.11 sec)

  1. Plot class probabilities calculated by the Voti...

    random_state = 123 ) clf2 = RandomForestClassifi ( n_estimators = 100..., random_state = 123 ) clf3 = GaussianNB () X = np . array ([[...
    scikit-learn.org/stable/auto_examples/ensemble/plot_voting_probas.html
    Thu Apr 17 23:17:16 UTC 2025
      101.1K bytes
      Cache
     
  2. BisectingKMeans — scikit-learn 1.6.1 documentation

    random_state = None , max_iter = 300 , verbose = 0 , tol = 0.0001 ,...( n_clusters = 8 , * , init = 'random' , n_init = 1 , random_state...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.BisectingKMeans.html
    Thu Apr 17 23:17:16 UTC 2025
      152.2K bytes
      Cache
     
  3. Hyperparameter — scikit-learn 1.6.1 documentation

    y = make_friedman2 ( n_samples = 50 , noise = 0 , random_state...random_state = 0 ) >>> kernel = ConstantKernel ( constant_value = 1.0...
    scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Hyperparameter.html
    Thu Apr 17 23:17:16 UTC 2025
      116.8K bytes
      Cache
     
  4. Effect of model regularization on training and ...

    n_informative = 50 , shuffle = False , noise = 1.0 , coef = True , random_state...color = "k" , linewidth = 2 , linestyle = "--" , label = f "Optimum...
    scikit-learn.org/stable/auto_examples/model_selection/plot_train_error_vs_test_error.html
    Thu Apr 17 23:17:16 UTC 2025
      102.8K bytes
      1 views
      Cache
     
  5. BayesianRidge — scikit-learn 1.6.1 documentation

    max_iter = 300 , tol = 0.001 , alpha_1 = 1e-06 , alpha_2 = 1e-06...lambda_1 = 1e-06 , lambda_2 = 1e-06 , alpha_init = None , lambda_init...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html
    Thu Apr 17 23:17:18 UTC 2025
      149.9K bytes
      Cache
     
  6. Gaussian Mixture Model Ellipsoids — scikit-lear...

    any ( Y_ == i ): continue plt . scatter ( X [ Y_ == i , 0 ],...], X [ Y_ == i , 1 ], 0.8 , color = color ) # Plot an ellipse to...
    scikit-learn.org/stable/auto_examples/mixture/plot_gmm.html
    Thu Apr 17 23:17:17 UTC 2025
      100K bytes
      Cache
     
  7. RadiusNeighborsTransformer — scikit-learn 1.6.1...

    leaf_size = 30 , metric = 'minkowski' , p = 2 , metric_params = None...* , mode = 'distance' , radius = 1.0 , algorithm = 'auto' , leaf_size...
    scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsTransformer.html
    Thu Apr 17 23:17:18 UTC 2025
      146.1K bytes
      Cache
     
  8. non_negative_factorization — scikit-learn 1.6.1...

    W = None , H = None , n_components = 'auto' , * , init = None...tol = 0.0001 , max_iter = 200 , alpha_W = 0.0 , alpha_H = 'same'...
    scikit-learn.org/stable/modules/generated/sklearn.decomposition.non_negative_factorization.html
    Thu Apr 17 23:17:16 UTC 2025
      122.1K bytes
      Cache
     
  9. RandomTreesEmbedding — scikit-learn 1.6.1 docum...

    n_estimators = 100 , * , max_depth = 5 , min_samples_split = 2 , min_samples_leaf...max_leaf_nodes = None , min_impurity_decrease = 0.0 , sparse_output = True...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomTreesEmbedding.html
    Thu Apr 17 23:17:18 UTC 2025
      157.9K bytes
      Cache
     
  10. 6.4. Imputation of missing values — scikit-lear...

    >>> imp = SimpleImputer ( missing_values =- 1 , strategy = 'mean'...imp = IterativeImputer ( max_iter = 10 , random_state = 0 ) >>>...
    scikit-learn.org/stable/modules/impute.html
    Thu Apr 17 23:17:18 UTC 2025
      83.8K bytes
      Cache
     
Back to top