Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 2381 - 2390 of 4,759 for * (3.06 sec)

  1. cohen_kappa_score scikit-learn 1.7.1 document...

    = [ "negative" , "positive" , "negative" , "neutral" , "positive"..."positive" ] >>> y2 = [ "negative" , "positive" , "negative" , "neutral"...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
    Sat Aug 02 00:15:38 UTC 2025
      111K bytes
      Cache
     
  2. balanced_accuracy_score scikit-learn 1.7.1 do...

    = [ 0 , 1 , 0 , 0 , 1 , 0 ] >>> y_pred = [ 0 , 1 , 0 , 0 , 0 ,...Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010). The balanced...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
    Sat Aug 02 00:15:35 UTC 2025
      110.7K bytes
      Cache
     
  3. rand_score scikit-learn 1.7.1 documentation

    rand_score ([ 0 , 0 , 1 , 1 ], [ 1 , 1 , 0 , 0 ]) 1.0 Labelings...0 , 0 , 1 , 1 ]) 0.83 Gallery examples # Adjustment for chance...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.rand_score.html
    Sat Aug 02 00:15:38 UTC 2025
      110.6K bytes
      Cache
     
  4. root_mean_squared_log_error scikit-learn 1.7....

    y_true = [ 3 , 5 , 2.5 , 7 ] >>> y_pred = [ 2.5 , 5 , 4 , 8 ] >>>...root_mean_squared_log_error ( y_true , y_pred ) 0.199... On this page This...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.root_mean_squared_log_error.html
    Sat Aug 02 00:15:38 UTC 2025
      107.7K bytes
      Cache
     
  5. DecisionTreeRegressor scikit-learn 1.7.1 docu...

    min_impurity_decrease = 0.0 , ccp_alpha = 0.0 , monotonic_cst = None ) [source].... Parameters : criterion {squared_error, friedman_mse, absolute_error”,...
    scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
    Sat Aug 02 00:15:38 UTC 2025
      166K bytes
      Cache
     
  6. MLPRegressor scikit-learn 1.7.1 documentation

    function, returns f(x) = 1 / (1 + exp(-x)). tanh, the hyperbolic tan...function, returns f(x) = max(0, x) solver {lbfgs, sgd, adam’},...
    scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
    Sat Aug 02 00:15:36 UTC 2025
      163.1K bytes
      Cache
     
  7. MeanShift scikit-learn 1.7.1 documentation

    = np . array ([[ 1 , 1 ], [ 2 , 1 ], [ 1 , 0 ], ... [ 4 , 7 ],...= 2 ) . fit ( X ) >>> clustering . labels_ array([1, 1, 1, 0,...
    scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
    Sat Aug 02 00:15:36 UTC 2025
      127.4K bytes
      Cache
     
  8. FrozenEstimator scikit-learn 1.7.1 documentation

    array(...) fit ( X , y , * args , ** kwargs ) [source] # No-op....FrozenEstimator ( clf ) >>> frozen_clf . fit ( X , y ) # No-op Froze...
    scikit-learn.org/stable/modules/generated/sklearn.frozen.FrozenEstimator.html
    Sat Aug 02 00:15:38 UTC 2025
      119K bytes
      Cache
     
  9. make_gaussian_quantiles scikit-learn 1.7.1 do...

    [np.int64(2), np.int64(0), np.int64(1), np.int64(0), np.int64(2)]...X . shape (100, 2) >>> y . shape (100,) >>> list ( y [: 5 ]) [np.int64(2),...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html
    Sat Aug 02 00:15:38 UTC 2025
      112K bytes
      Cache
     
  10. make_swiss_roll scikit-learn 1.7.1 documentation

    make_swiss_roll ( noise = 0.05 , random_state = 0 ) >>> X . shape (100, 3) >>>...sklearn.datasets. make_swiss_roll ( n_samples = 100 , * , noise = 0.0 , random_state...
    scikit-learn.org/stable/modules/generated/sklearn.datasets.make_swiss_roll.html
    Sat Aug 02 00:15:35 UTC 2025
      109.7K bytes
      Cache
     
Back to top