Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 221 - 230 of 1,990 for = (0.44 sec)

  1. TSNE — scikit-learn 1.6.1 documentation

    init = 'pca' , verbose = 0 , random_state = None , method = 'barnes_hut'...n_components = 2 , * , perplexity = 30.0 , early_exaggeration = 12.0...
    scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
    Thu Apr 17 23:17:16 UTC 2025
      143.7K bytes
      Cache
     
  2. ROC Curve with Visualization API — scikit-learn...

    y = load_wine ( return_X_y = True ) y = y == 2 X_train...y_test = train_test_split ( X , y , random_state = 42 ) svc = SVC...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_roc_curve_visualization_api.html
    Thu Apr 17 23:17:17 UTC 2025
      105.1K bytes
      Cache
     
  3. favicon_64x64_16bit.png

    35273367 width=64, height=64, bitDepth=8, colorType=RGBAlpha, c...whitePointX=31270, whitePointY=32900, redX=64000, redY=33000, greenX=30000,...
    www.elastic.co/favicon_64x64_16bit.png
    Mon Mar 24 20:10:51 UTC 2025
      6.1K bytes
     
  4. Decision Boundaries of Multinomial and One-vs-R...

    n_samples = 1_000 , centers = centers , random_state = 40 ) transformation..., ax = plt . subplots ( figsize = ( 6 , 4 )) scatter = ax . scatter...
    scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html
    Thu Apr 17 23:17:17 UTC 2025
      110.7K bytes
      Cache
     
  5. Poisson regression and non-normal loss — scikit...

    axes = plt . subplots ( nrows = 2 , ncols = 4 , figsize = ( 16..., ax = plt . subplots ( nrows = 2 , ncols = 2 , figsize = ( 12...
    scikit-learn.org/stable/auto_examples/linear_model/plot_poisson_regression_non_normal_loss.html
    Thu Apr 17 23:17:17 UTC 2025
      171.7K bytes
      Cache
     
  6. Multilabel classification — scikit-learn 1.6.1 ...

    if transform == "pca" : X = PCA ( n_components = 2 ) . fit_transform...elif transform == "cca" : X = CCA ( n_components = 2 ) . fit ( X...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html
    Thu Apr 17 23:17:16 UTC 2025
      106.2K bytes
      Cache
     
  7. Plot multi-class SGD on the iris dataset — scik...

    mean ( axis = 0 ) std = X . std ( axis = 0 ) X = ( X - mean ) /...dataset X = iris . data [:, : 2 ] y = iris . target colors = "bry"...
    scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html
    Thu Apr 17 23:17:17 UTC 2025
      94.8K bytes
      Cache
     
  8. plot_multi_metric_evaluation.rst.txt

    py: ========== Demonstration of multi-metric...cross_val_score and GridSearchCV ========== Multiple metric parameter...
    scikit-learn.org/stable/_sources/auto_examples/model_selection/plot_multi_metric_evaluation.rst.txt
    Thu Apr 17 23:17:16 UTC 2025
      6.6K bytes
     
  9. ridge_regression — scikit-learn 1.6.1 documenta...

    sample_weight = None , solver = 'auto' , max_iter = None , tol = 0.0001..., verbose = 0 , positive = False , random_state = None , return_n_iter...
    scikit-learn.org/stable/modules/generated/sklearn.linear_model.ridge_regression.html
    Thu Apr 17 23:17:18 UTC 2025
      119.3K bytes
      Cache
     
  10. RandomForestClassifier — scikit-learn 1.6.1 doc...

    n_estimators = 100 , * , criterion = 'gini' , max_depth = None , min_samples_split...min_weight_fraction_leaf = 0.0 , max_features = 'sqrt' , max_leaf_nodes = None ,...
    scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
    Thu Apr 17 23:17:18 UTC 2025
      185.6K bytes
      Cache
     
Back to top