Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 11 - 20 of 126 for pipe (0.18 sec)

  1. Comparing Target Encoder with Other Encoders — ...

    pipe ): result = cross_validate ( pipe , X , y , scoring...categorical_features ), ] ) pipe = make_pipeline ( preprocessor...
    scikit-learn.org/stable/auto_examples/preprocessing/plot_target_encoder.html
    Fri Jul 11 17:08:38 UTC 2025
      119.3K bytes
      Cache
     
  2. 7.1. Pipelines and composite estimators — sciki...

    SVC ())] >>> pipe = Pipeline ( estimators ) >>> pipe Pipeline(s...pipeline: >>> pipe . steps [ 0 ] ('reduce_dim', PCA()) >>> pipe [ 0 ]...
    scikit-learn.org/stable/modules/compose.html
    Fri Jul 11 17:08:41 UTC 2025
      112.5K bytes
      Cache
     
  3. Displaying Pipelines — scikit-learn 1.7.0 docum...

    ] pipe = Pipeline ( steps ) pipe # click on the...= "linear" ))] pipe = Pipeline ( steps ) pipe # click on the...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_pipeline_display.html
    Fri Jul 11 17:08:41 UTC 2025
      287.7K bytes
      Cache
     
  4. auto_examples_python.zip

    pipe.set_params(max_depth=3, max_iter=15) else: pipe.set_params(... step=1)), ] ) pipe.fit(X, y) ranking = pipe.named_steps["rf...
    scikit-learn.org/stable/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip
    Fri Jul 11 17:08:41 UTC 2025
      1.7M bytes
      7 views
     
  5. Release Highlights for scikit-learn 1.0 — sciki...

    LogisticRegression ()) pipe . fit ( X , y ) pipe [: - 1 ] . get_feature_names_out...the latest version (with pip): pip install -- upgrade scikit...
    scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_0_0.html
    Fri Jul 11 17:08:41 UTC 2025
      114.8K bytes
      Cache
     
  6. "It's over." | MetaFilter

    (and I don't hit the hopium pipe anymore), I am in agreement...
    www.metafilter.com/209457/Its-over
    Sun Jul 06 00:54:28 UTC 2025
      69.4K bytes
      Cache
     
  7. Recursive feature elimination — scikit-learn 1....

    ] ) pipe . fit ( X , y ) ranking = pipe . named_steps...), - 1 )) y = digits . target pipe = Pipeline ( [ ( "scaler" ,...
    scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
    Fri Jul 11 17:08:41 UTC 2025
      91.4K bytes
      Cache
     
  8. preprocessing.rst.txt

    random_state=42) >>> pipe = make_pipeline(StandardScaler(),..., LogisticRegression()) >>> pipe.fit(X_train, y_train) # apply...
    scikit-learn.org/stable/_sources/modules/preprocessing.rst.txt
    Fri Jul 11 17:08:42 UTC 2025
      52.9K bytes
     
  9. Categorical Feature Support in Gradient Boostin...

    for pipe in ( hist_dropped , hist_one_hot...hist_ordinal , hist_native ): if pipe is hist_native : # The native...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html
    Fri Jul 11 17:08:41 UTC 2025
      125.4K bytes
      Cache
     
  10. Selecting dimensionality reduction with Pipelin...

    load_digits ( return_X_y = True ) pipe = Pipeline ( [ ( "scaling" ,...f)" ] grid = GridSearchCV ( pipe , n_jobs = 1 , param_grid =...
    scikit-learn.org/stable/auto_examples/compose/plot_compare_reduction.html
    Fri Jul 11 17:08:41 UTC 2025
      135.6K bytes
      Cache
     
Back to top