Search Options

Results per page
Sort
Preferred Languages
Labels
Advance

Results 181 - 190 of 455 for f (0.05 sec)

  1. LeaveOneOut — scikit-learn 1.6.1 documentation

    print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index } " ) ... print ( f " Test: index= { test_index }...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeaveOneOut.html
    Wed Feb 19 13:18:05 UTC 2025
      116.7K bytes
      Cache
     
  2. PredefinedSplit — scikit-learn 1.6.1 documentation

    print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index } " ) ... print ( f " Test: index= { test_index }...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.PredefinedSplit.html
    Wed Feb 19 13:18:04 UTC 2025
      116.1K bytes
      Cache
     
  3. Custom refit strategy of a grid search with cro...

    target == 8 print ( f "The number of images is { X ....filtered_cv_results [ "params" ], ): print ( f "precision: { mean_precision :...
    scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html
    Wed Feb 19 13:18:04 UTC 2025
      124K bytes
      Cache
     
  4. Prediction Intervals for Gradient Boosting Regr...

    f ( xx ), "g:" , linewidth = 3 , label = r "$f(x) = x\,\sin(x)$"...( xx , f ( xx ), "g:" , linewidth = 3 , label = r "$f(x) = x\,\sin(x)$"...
    scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html
    Wed Feb 19 13:18:05 UTC 2025
      142.2K bytes
      Cache
     
  5. The Johnson-Lindenstrauss bound for embedding w...

    legend ([ f "eps = { eps : 0.1f } " for eps...color = color ) plt . legend ([ f "n_samples = { n } " for n in...
    scikit-learn.org/stable/auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.html
    Wed Feb 19 13:18:05 UTC 2025
      119.9K bytes
      Cache
     
  6. Gaussian processes on discrete data structures ...

    baseline_similarity_bounds ) def _f ( self , s1 , s2 ): """ kernel...return ( np . array ([[ self . _f ( x , y ) for y in Y ] for x in...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_on_structured_data.html
    Wed Feb 19 13:18:05 UTC 2025
      120.7K bytes
      Cache
     
  7. LeavePGroupsOut — scikit-learn 1.6.1 documentation

    print ( f "Fold { i } :" ) ... print ( f " Train: index=...train_index ] } " ) ... print ( f " Test: index= { test_index }...
    scikit-learn.org/stable/modules/generated/sklearn.model_selection.LeavePGroupsOut.html
    Wed Feb 19 13:18:05 UTC 2025
      123.2K bytes
      Cache
     
  8. Combine predictors using stacking — scikit-lear...

    { key : ( f " { np . abs ( np . mean ( scores [ f 'test_ { value...])) : .2f } +- " f " { np . std ( scores [ f 'test_ { value }...
    scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html
    Wed Feb 19 13:18:04 UTC 2025
      244K bytes
      Cache
     
  9. fbeta_score — scikit-learn 1.6.1 documentation

    [source] # Compute the F-beta score. The F-beta score is the weighted...precision. The formula for F-beta score is: \[F_\beta = \frac{(1 + \beta^2)...
    scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
    Wed Feb 19 13:18:05 UTC 2025
      121.5K bytes
      1 views
      Cache
     
  10. Illustration of prior and posterior Gaussian pr...

    label = f "Sampled function # { idx + 1...plt . tight_layout () print ( f "Kernel parameters before fit:...
    scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_prior_posterior.html
    Wed Feb 19 13:18:04 UTC 2025
      135.8K bytes
      Cache
     
Back to top